Skip to main content Accessibility help
×
Home

Rapid Thermal Low Pressure Metalorganic Chemical Vapor Deposition of InP and Related Materials

  • A. Katz (a1) and A. Feingold (a1)

Abstract

High quality InP and In0.53Ga0.67As undoped and Zn-doped layers were grown by means of rapid thermal low pressure metalorganic chemical vapor deposition (RTLPMOCVD) technique, using tertiarybutylphosphine (TBP) and tertiarybutylarsine (TBA), as the phosphorus and arsenic sources. The InP films were grown at a P:In ratios of about 75 and the InGaAs films were grown at a As:In ration of about 2, low temperatures at the range of 450-550°C, pressures it the range of 1-4 tons, and growth rates of 2-3 nm/sec. All the film growth conditions were optimized to yield defect-free layers with featureless morphology, which reflected at a minimum backscattering yield (X min) as low as 3.1% for the InP and 3.6% for the InGaAs. These films presented a good electrical properties, as well, with hole mobility of 4200 cm2/Vs for the undoped-InP layers and 75 cm2/Vs for the undoped-InGaAs layers.

Copyright

References

Hide All
1. Kellert, F. G., Whelan, J. S. and Chan, K. T., J. Electron. Mater. 18, 355 (1989).
2. Takeda, Y., Araki, S., Noda, S., and Sasaki, A., Japan. J. Appl. Phys. 29, 11 (1990).
3. Miller, B. I., Young, M. G., Oron, M., Koren, V., and Kisker, D., Appl. Phys. Lett. 56, 1439 (1990).
4. Agazzaden, A., Memet, R., Gao, Y., Kazmierski, C., Robein, D., and Mircea, A., Electron. Lett. 27, 1005 (1991).
5. Horita, M., Suzuki, M., and Matsushima, Y., J. Crystal Growth 124, 123 (1992).
6. Reynolds, S., Vook, D. W., and Gibbons, J. F., Appl. Phys. Lett. 49, 1720 (1986).
7. Gibbons, J. F., Gronet, C. M., and Williams, K. E., Appl. Phys. Lett. 47, 721 (1985).
8. Katz, A., Feingold, A., Pearton, S. J., Chakrabarti, U. K., and Lee, K. M., Semicon. Sci. Technol. 7, 583 (1992).
9. Katz, A., Feingold, A., Pearton, S. J., and Chakrabarti, U. K., Appl. Phys. Lett. 59, 579 (1991).
10. Katz, A., Feingold, A. Nakahara, S., Lane, E., Geva, M., Pearton, S. J., Stevie, F. A., and Jones, K., J. Appl. Phys. 71, 993 (1992).
11. Katz, A., Feingold, A., Pearton, S. I., Geva, M., and Lane, E., J. Electronic Materials 20, 1069 (1991).
12. Horita, M., Suzuki, M., and Matsushima, Y., Appl. Phys. Lett. 62, 882 (1993).
13. Bhat, R., Koza, M. A., Hwang, D. M., Brasil, M. J. S. P., Nahory, R. E., and Oe, K., J. Crystal Growth, 1246, 311 (1992).
14. Keller, F. G., Whalen, J. S., and Chan, K. T., J. Electron. Mater. 18, 355 (1989).
15. Katz, A., Feingold, A., Moriya, N., Nakahara, S., Abernathy, C. R., Pearton, S. J., and El-Roy, A., Geva, M., Baiocchi, F. A., Luther, L. C., and Lane, E., Appl. Phys. Lett., to be published.
16. Katz, A., Feingold, A., Nakahara, S., Pearton, S. J., Moriya, N., Baiocchi, C. J., and Geva, M., Appl. Phys. Lett., to be published.

Rapid Thermal Low Pressure Metalorganic Chemical Vapor Deposition of InP and Related Materials

  • A. Katz (a1) and A. Feingold (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed