Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T04:06:20.477Z Has data issue: false hasContentIssue false

Rapid Thermal Epitaxy for Device Applications

Published online by Cambridge University Press:  15 February 2011

C. A. King
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. W. Johnson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. Y. Chiu
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. M. Sung
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. Mastrapasqua
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. R. Pinto
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Rapid thermal epitaxy (RTE) is studied for a variety of applications including transistors as well as optoelectronic devices. Two transistor applications are discussed here. First, the growth of n-type epitaxial layers over n+ buried layers for low power BiCMOS, and second, the growth and fabrication of charge injection transistors (CHINTs) from a multi-layer structure including strained Si1−xGex layers.

Scaled bipolar transistors for BiCMOS integrated circuits require low collector-substrate capacitance in order to minimize power consumption. The unintentional incorporation of dopant into a growing epitaxial layer, known as autodoping, can affect the ultimate lower limit of the collector-substrate capacitance. In this work, we studied the effects of epitaxial layer growth rate, arsenic buried layer implant dose, and pre-epitaxial bake temperature on autodoping using RTE. To begin, we experimented with the buried layer implant dose to check its affect on lateral autodoping. The amount of autodoping increased when the buried layer implant dose increased, confirming the source of the arsenic autodoping as the buried layer. Also, in contrast to data from conventional reactors, we found the peak interface concentration and integrated dose in regions adjacent to the buried layer to be linearly dependent on the growth rate (i.e. low growth rates trap less arsenic at the substrate/epi layer interface). Next, by adjusting the pre-bake temperature over a range from 800 to 1050°C without changing the growth conditions, we first observed a rise in autodoping with temperature to 950°C at which point the incorporated autodoping dose and peak concentration began to fall. Through simulation of the evaporated arsenic from the buried layer and data for arsenic desorption from the silicon surface, we explain this behavior. Finally, using the data gathered on the autodoping characteristics of RTE, we show a process using two growth rate steps and a low temperature pre-bake step which completely eliminates the lateral autodoping peak. Using this new growth process, epitaxial silicon films over arsenic doped buried layers for low power BiCMOS are possible.

Charge injection transistors and logic elements have been successfully implemented in a Si/Si0.7Ge0.3 heterostructure grown by RTE on a Si substrate. Shallow p+ source and drain ohmic contacts are obtained by a boron diffusion from a selectively deposited boron doped Ge layer. Room temperature operation of the charge injection transistor is demonstrated for the first time. High frequency measurements indicate a short circuit current gain cutoff frequency of 6 GHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. King, C. A., Hoyt, J. L., Gronet, C. M., Gibbons, J. F., Scott, M. P., Rosner, S. J., Reid, G., Laderman, S. S., Nauka, K. and Kamins, T. I., IEEE Trans. Electron Devices, 35 (12), 2454, (1988).Google Scholar
2. King, C. A., Hoyt, J. L., Gronet, C. M., Gibbons, J. F., Scott, M. P. and Turner, J., IEEE Electron Device Lett., 10 (2), 52, (1989).Google Scholar
3. Jalali, B., Levi, A. F. J., Ross, F. and Fitzgerald, E. A., Electron. Lett., 28 (3), 269, (1992).Google Scholar
4. Thomas, C. O., Kahng, D. and Manz, R. C., J. Electrochem. Soc., 109 1055, (1962).Google Scholar
5. Srinivasan, G. R., J. Electrochem. Soc., 127 (6), 1334, (1980).Google Scholar
6. Chiu, T.-Y., Lee, K. F., Lau, M. Y., Finegan, S. N., Morris, M. D. and Voshchenkov, A. M., IEEE Electron Device Lett., 11 (3), 123, (1990).Google Scholar
7. Murley, P. C. and Srinivasan, G. R., J. Electrochem. Soc., 136 (7), 2010, (1989).Google Scholar
8. Donahue, T. J. and Reif, R., J. Appl. Phys., 57 (8), 2757, (1985).Google Scholar
9. Donahue, T. J. and Reif, R., J. Electrochem. Soc., 133 (8), 1697, (1986).Google Scholar
10. Gibbons, J. F., Gronet, C. M. and Williams, K. E., Appl. Phys. Lett., 47 721, (1985).Google Scholar
11. Wong, M., Reif, R. and Srinivasan, G. R., IEEE Trans. Electron Dev., ED–32 (2), 89, (1985).Google Scholar
12. Reif, R., Kamins, T. I. and Saraswat, K., J. Electrochem. Soc., 125 (11), 1860, (1978).Google Scholar
13. Srinivasan, G. R., J. Electrochem. Soc., 125 (1), 146, (1978).Google Scholar
14. Herring, R. G., in Semiconductor Silicon, p. 126, The Electrochemical Society Softbound Proceedings Series, (1979).Google Scholar
15. Chang, H. R., p. 402, The Electrochemical Society Extended Abstracts, Toronto, Ont., Canada, 1985.Google Scholar
16. Rafferty, C. S., Vuong, H.-H., Eshraghi, S. A., Giles, M. D., Pinto, M. R. and Hillenius, S. J., in IEDM Tech. Dig., p. 311, (1993).Google Scholar
17. Perino, S. C., Ph.D. Thesis, Stanford University, (1982).Google Scholar
18. Luryi, S., Kastalsky, A., Gossard, A. C. and Hendel, R. H., IEEE Trans. Electron Devices, 31 (6), 832, (1984).Google Scholar
19. Gribnikov, Z. S., Sov. Phys. Semicond., 6 (7), 1204, (1973).Google Scholar
20. Hess, K., Markoc, H., Shichijo, H. and Streetman, B. G., Appl. Phys. Lett., 35 (6), 469, (1979).Google Scholar
21. Luryi, S. and Pinto, M. R., Phys. Rev. Lett., 67 (17), 2351, (1991).Google Scholar
22. Luryi, S., Mensz, P. M., Pinto, M. R., Garbinski, P. A., Cho, A. Y. and Sivco, D. L., Appl. Phys. Lett., 57 (17), 1787, (1990).Google Scholar
23. Mastrapasqua, M., Luryi, S., Belenkey, G. L., Garbinski, P. A., Cho, A. Y. and Sivco, D. L., in IEDM Tech. Digest, p. 659, (1992).Google Scholar
24. Maezawa, K. and Mizutani, T., Jpn. J. Appl. Phys., 30 (6), 1190, (1991).Google Scholar
25. Akeyoshi, T., Maezawa, K., Tomizawa, M. and Mizutani, T., Jpn. J. Appl. Phys., 32 (1A), 26, (1993).Google Scholar
26. Belenkey, G. L., Garbinski, P. A., Smith, P. R., Luryi, S., Cho, A. Y., Hamm, R. and Sivco, D. L., in IEDM Tech. Digest, p. 423, (1993).Google Scholar
27. Mensz, P. M., Luryi, S., Bean, J. C. and Buescher, C. J., Appl. Phys. Lett., 56 (26), 2663, (1990).Google Scholar
28. Park, B. G., King, C. A., Eaglesham, D. J., Sorsch, T. W., Weir, B., Luftman, H. S., Bokor, J. and Kim, Y. O., p. 122, SPIE-Microelectronic Processes, Sensors, and Controls, Monterey, CA, 1993.Google Scholar
29. Pinto, M. R., in 1991 ULSI Science and Technology, p. 43, Electrochem. Soc. Proc., (1991).Google Scholar
30. Mastrapasqua, M. and Pinto, M. R., unpublished.Google Scholar