Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-28T23:43:21.489Z Has data issue: false hasContentIssue false

Rapid Thermal Annealing of Spin-On Glass Films

Published online by Cambridge University Press:  22 February 2011

Laurent Ventura
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Bouchaíb Hartiti
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Abdelilah Slaoui
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Jean-Claude Muller
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Paul Siffert
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), BP 20, F-67037 Strasbourg Cedex 2, France
Get access

Abstract

Rapid thermal annealing is investigated for curing spin-on glass insulating films. The annealed SOG films were mainly evaluated using infrared absorption spectroscopy and by electrical measurement of the defects present at the Si/Sio2 interface. We found in particular after rapid thermal annealing an important densification of the layers as a function of temperature and a reduction of the interfacial state densities which are comparable to classical thermal oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsunekawa, S., Homma, Y., Harada, S., in The Electrochemical Society Extended Abstracts. (Electrochemical Society Vol. 83–2, Washington, DC, 1983) Abstract 282, p.436.Google Scholar
2. Fritzsche, H., in “IEEE V-MIC Conference Proceedings”. (IEEE, New York, 1986), p. 45.Google Scholar
3. Ting, C. H., Lin, H. Y., Pai, P. L., Oldham, W. G., in “IEEE V-MIC Conference Proceedings”. (IEEE, New York, 1987), p. 61.Google Scholar
4. Ikeda, Y., Numazawa, Y., Sakamoto, M., 35th Spring Meeting of The Japan Society of Applied Physics and Related Societies, 1986 — Extended Abstract 29a-V-8, p. 638.Google Scholar
5. Uoochi, Y., Tabuchi, A., Furumura, Y., J. Electrochem. Soc, 137 (12), 3923 (1990).Google Scholar
6. Woo, M. P., Cain, J. L., Oue Lee, C., J. Electrochem. Soc, 137 (1), 196 (1990).Google Scholar
7. Nakamura, M., Kanzawa, R., Sakai, K., J. Electrochem. Soc, 133 (6), 1167 (1986).Google Scholar
8. Uoochi, Y., Maeda, M., in “Proceedingof The 31st Symposium on semiconductors and Integrated Circuits Technology.” (1986) p. 91.Google Scholar
9. Nulman, J., Krusius, J. P., and Gat, A., IEEE Electron Device Lett., EDL-6, 205 (1985).Google Scholar
10. Moslehi, M., Appl. Phys. A46, 255 (1988).Google Scholar
11. Singh, R., J. Appl. Phys. 63, R59 (1988).Google Scholar
12. Kern, W., Puotinen, D.A., RCA Review, 31, 187 (1970).Google Scholar
13. Pliskin, W. A., J. Vac. Sci. 14, 1064 (1977).Google Scholar
14. Pliskin, W. A., Lehmann, A., J. Electrochem. Soc, 112, 1013 (1965).Google Scholar
15. Schumann, L., Lehmann, H. S., Sobotta, H., Riede, V., Teschner, U., Hubner, K., Phys. Stat. Sol, B 110, K69 (1962).Google Scholar
16. Almeida, R. M., Puntano, C. G., J. Appl. Phys, 68 (8), 4225 (1990).Google Scholar
17. Pai, P., Chetty, A., Roat, R., Cox, N., and Ting, C., J. of Electrochem. Soc, 134, 2829 (1987).Google Scholar
18. Terman, L. M., Solid State Electron, 5, 285 (1962).Google Scholar
19. Dauplaise, H. M., Vaccaro, K., Bennett, B. R., Lorenzo, J. P., J. of Electrochem. Soc, 139 (6), 1684 (1992).Google Scholar