Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T07:14:54.602Z Has data issue: false hasContentIssue false

Rapid Thermal Annealing of Si-Implanted GaAs for Power FETs

Published online by Cambridge University Press:  25 February 2011

H. Kanber
Affiliation:
Torrance Research Center, Hughes Aircraft Company, Torrance, CA 90509
R. J. Cipolli
Affiliation:
Torrance Research Center, Hughes Aircraft Company, Torrance, CA 90509
J. M. Whelan
Affiliation:
Materials Science Dept., University of Southern California, Los Angeles, CA 90089
Get access

Abstract

Optimization and the advantages of rapid thermal annealing (RTA) for the electrical activation of deep 300 keV Si+ implants into GaAs are investigated and established for doses of 6 to 8×1012 cm−2. These implant conditions are appropriate for power FETs. Results are compared with those based on conventional controlled atmosphere capless furnace annealing (CAT).

The RTA yielded higher peak electron concentrations, high mobilities and greater uniformities in the gateless FET saturation currents. The deep implant results ontrast with those for shallower implants for low noise FETs. These differences are explained using a well-known implant damage model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Malbon, R.M., Lee, D.H. and Whelan, J.M., J Electrochem. Soc. 123, 1413 (1976).Google Scholar
2. Kim, H.B., Whelan, J.M., Eu, V.K. and Henderson, W.B., in : Proceedings of the Seventh Biennial Cornell Electrical Engineering Conference (Cornell University, Ithaca, NY, 1979) p. 121.Google Scholar
3. Feng, M., Kanber, H., Eu, V.K. and Siracusa, M., Electronics Lett. 18, 1097 (1982).Google Scholar
4. Kanber, H., Cipolli, R.J., Henderson, W.B. and Whelan, J.M., 26th Electronic Materials Conference, Santa Barbara, CA. June 1984, paper L-3.Google Scholar
5. Heatpulse system manufactured by AG Associates, Mountain View, California 94043.Google Scholar
6. Kanber, H., unpublished.Google Scholar
7. Christel, L.A. and Gibbons, J.F., J. Appl. Phys, 52, 5050 (1981).Google Scholar
8. Magee, T.G., Kawayoshi, H., Ormond, R.D., Christel, L.A., Gibbons, J.F., Hopkins, C.G., Evans, C.A. Jr. and Day, D.S., Appl. Phys. Lett. 39, 906 (1981).Google Scholar
9. Sadana, D.K., Booker, G.R., Sealy, B.J., Stephens, K.G. and Badawi, M.H., Radiation Eff. 49, 183 (1980).Google Scholar
10. Sadana, D.K., Sands, T. and Washburn, J., Appl. Phys. Lett. 44, 623 (1984).Google Scholar
11. Kanber, H., Feng, M. and Whelan, J.M., MRS Symposium on Ion Implantation and Ion Beam Processing of Materials, Boston, Mass., Nov. 83, Vol. 27 (North-Holland, New York, 1984), p. 365.Google Scholar
12. Eu, V., Feng, M., Henderson, W.B., Kim, H.B. and Whelan, J.M., Appl. Phys. Lett. 37, 473 (1980).Google Scholar
13. Feng, M., Kwok, S.P., Eu, V. and Henderson, B.W., J. Appl. Phys. 52, 2990 (1981).Google Scholar
14. Kanber, H., Feng, M. and Whelan, J.M., Appl. Phys. Lett. 40, 960 (1982).Google Scholar
15. Kanber, H., Feng, M. and Whelan, J.M., J. Appl. Phys. 55, 347 (1984).Google Scholar