Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T13:09:13.498Z Has data issue: false hasContentIssue false

Rapid Isothermal Annealing of N-Implanted 6H-SiC Layers Used for Fabrication of p-n Photodiodes

Published online by Cambridge University Press:  25 February 2011

Gerhard Pensl
Affiliation:
Pensl, Helbig, Zhang University of Erlangen, Institute of Applied Physics, Glückstraβe 9, D-8520 Erlangen, Federal Republic of Germany
Reinhard Helbig
Affiliation:
Pensl, Helbig, Zhang University of Erlangen, Institute of Applied Physics, Glückstraβe 9, D-8520 Erlangen, Federal Republic of Germany
Hong Zhang
Affiliation:
Pensl, Helbig, Zhang University of Erlangen, Institute of Applied Physics, Glückstraβe 9, D-8520 Erlangen, Federal Republic of Germany
Gonther Ziegler
Affiliation:
Ziegler, Lanig Siemens AG, Research Laboratories, D-8520 Erlangen, Federal Republic of Germany
Peter Lanig
Affiliation:
Ziegler, Lanig Siemens AG, Research Laboratories, D-8520 Erlangen, Federal Republic of Germany
Get access

Abstract

Ion implantation of 14N and Rapid Isothermal Annealing (RIA) were employed to achieve n-type doping in epitaxial-grown 6H-SiC layers. The electrical properties of the implanted films were investigated by Hall effect measurements in order to optimize the annealing parameters. In comparison with standard furnace annealing (1470°C/7min), the annealing parameters for the RIA process could be considerably reduced (1050°C/4min). Based on planar technique, implanted p-n junctions were fabricated. The temperature dependence of I-V characteristics and of the quantum efficiency of photodiodes were studied. The maximum of the quantum efficiency at γ=330 nm reaches values of 35% at 400°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Marsh, O.J., Proc.Third Int.Conf. on SiC, University of South Carolina Press, Columbia, p.471, 1974 Google Scholar
2. Kalinina, E.V., Prokof'eva, N.K. Surorov, A.V., Kholuyanov, G.F., Chelnokov, V.E., Sov.Phys. Semicond. 12, 1372(1978)Google Scholar
3. Edmond, J.A., Kim, H.J.,Davis, T.F., Mat.Res.Soc.Symp.Proc. 52, 352(1986)Google Scholar
4. Hoffmann, L., Ziegler, G., D. Theis, Weyrich, C., J.Appl.Phys. 53, 6962 (1982)Google Scholar
5. Schaub, R., Pensl, G., Schulz, M., Appl.Phys. A34, 215(1984) -Google Scholar
6. Zhang, H., Pensl, G., Helbig, R., Ziegler, G., Lanig, P. to be published.Google Scholar
7. Geim, G., Pensl, G., Schulz, M., Appl.Phys. A 27, 71(1982)Google Scholar
8. Barber, H.D.: Solid State Electron. 10, 1039 (1967)Google Scholar
9. Pettenpaul, E., Ph.D.thesis 1977, Tec-nische Universität Hannover.Google Scholar
10. Philipp, H.R., Taft, E.A., Proc.Conf. on SiC, Boston, p.366, 1960 Google Scholar
11. Sankin, V.I., Verenchikova, R.G. Vodakov, Y.A., Ramm, M.G., Roenkov, A.D., Sov. Phys. Semicond. 16, 851(1982)Google Scholar