Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-24T02:33:52.006Z Has data issue: false hasContentIssue false

Rapid Crystallization of Amorophous Gallium Produced by Laser Quenching

Published online by Cambridge University Press:  26 February 2011

J. Fröhlingsdorf
Affiliation:
Institut für Festkörperforschung, Kernforschungsanlage Jülich, P.O. Box 19 13, D-5170 J¨lich, FRG
B. Stritzker
Affiliation:
Institut für Festkörperforschung, Kernforschungsanlage Jülich, P.O. Box 19 13, D-5170 J¨lich, FRG
Get access

Abstract

Transient conductance measurements reveal the metastability of amorphous Gallium (a-Ga): Gallium can be amorphized for a certain “lifetime” at temperatures as high as 60 K, i.e. well above the crystallization temperature of 16 K.

For the first time the lower part of the C-shaped transition curve in a TTT-diagram can be measured for a pure metal. The results are in good agreement with undercooling behavior of liquid Ga-droplets.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peercy, P.S., in Laser Surface Treatment of Metals, edited by Draper, C.W. and Mazzoldi, P. (M. Nijhoff Publ., Dordrecht, 1986), p.57.Google Scholar
2. Buckel, W., Hilsch, R., Z. Physik 138, 109 (1954).Google Scholar
3. Fröhlingsdorf, J., Stritzker, B., in Laser Surface Treatment of Metals, edited by Draper, C.W. and Mazzoldi, P. (M. Nijhoff Publ. Dordrecht, 1986), p. 133.Google Scholar
4. Goerlach, U. et al., Z. Physik B 47, 227 (1982).Google Scholar
5. Defrain, A., J. Chim. Phys. Chim. Biol. 74, 851 (1977).Google Scholar
6. Bererhi, A. et al., J. Non-Cryst. Solids 30, 253 1979).Google Scholar
7. Galvin, G. et al., Phys. Rev. Lett. 48 (1), 33 (1982).CrossRefGoogle Scholar
8. Perepezko, J., Paik, J., MRS Proc. Vol.8, 49 (1982).CrossRefGoogle Scholar
9. Wolny, J. et al., Sol. St. Comm. 58 (9), 573 (1986).Google Scholar
10. Perepezko, J., Paik, J., in Novel Materials and Technologies in Condensed Matter, edited by Crabtree, G.W. and Vashishta, P. (Elsevier Sci. Publ., 1982), p. 57.Google Scholar
11. Skripov, V. et al., Phys. Met. Metall. 31 (4), 118 (1971).Google Scholar
12. Miyazawa, Y., Pound, G., J. Cryst. Growth 23, 45 (1974).Google Scholar