Skip to main content Accessibility help

Raman Studies of Microstructural Changes in Amorphous Silicon-Boron Alloys Due to Annealing

  • G. Yang (a1), P. Bai (a1), Y.-J Wu (a1), B. Y. Tong (a2), S. K. Wong (a2), J. Du (a2) and I. Hill (a3)...


Crystallization of amorphous Sil−x.Bx alloy films by annealing is studied. Amorphous Sil−xBx. alloy films with composition of boron x ranging from 0.01 to 0.5 are deposited on Si substrates at a temperature of 480° in a low pressure chemical vapor deposition (LPCVD) system. Three films with the boron contents, 1%, 7% and 45%, are used in this study. The films are annealed in a nitrogen ambient for 30 minutes at temperatures between 600°C and 900°C. Raman spectra of the silicon vibrational mode serve as a indicator for the microstructure of the Sil−xBx, alloy films. Quantitative estimates of the volume fraction of the crystalline silicon component in respect to the amorphous silicon component in the films are calculated based on the silicon TO mode. The results show that while for the film with the boron content of 1% crystallization occurs at the annealing temperature of 500°C, the annealing temperature of 7000C is required to observe crystallization in the films with the boron contents of 7% and 45%. As the annealing temperature increases, the volume fraction of the crystalline component increases. For a given annealing temperature, the rate of crystallization depends inversely on the boron content in the films.



Hide All
1. Gonzalez-Hernandez, J. and Tsu, R., Appl. Phys. Lett., 42, 90(1983).
2. Morimoto, A., Kumeda, M., and Shimizu, T., J. Non-Cryst. Solids, 59&60, 537(1983).
3. Morin, F. and Morrel, M., Appl. Phys. Lett., 35, 686(1979).
4. Iqbal, Z., Webb, A. P., and Veprek, S., Appl. Phys. Lett., 36, 163(19800.
5. Hamasaki, T., kurata, H., Hirose, M., and Osaka, Y., Appl. Phys. Lett., 37, 1084(1980).
6. Tsu, R., Chao, S. S., Izu, M., Ovshinsky, S. R., Jan, G., and Pollak, F. H., J. Phys. Paris Coll. C4, 269(1981).
7. Ishiwara, H., Tamba, A., Yamamoto, H., and Furukawa, S., Jpn. J. Appl. Phys., 24, L513(1985).
8. Alvi, N. S., Tang, S. M., Kwor, R., and Fulcher, M. R., J. Appl. Phys., 62, 4878(1987).
9. Bisaro, R., Magarino, J., Zellama, K., Squelard, S., Germain, P., and Morhange, J. F., Phys. Rev. B, 31, 3568(1985).
10. Yang, G., Bai, P., Tong, B. Y., Wong, S. K., and Hill, I., Solid State Commun., 72, 159(1989).
11. Tong, B. Y., Wong, S. K., Yao, J., Lau, W. M., Du, N., and John, P. K., Proc. MRS Spring Meeting, 1987.
12. Tsu, R., Gonzalez-Hernandez, J., Chao, S. S., Lee, S. C., and Tanaka, K., Appl. Phys. Lett., 40, 534(1982).
13. Stutzmann, M., Phys. Rev. B, 35, 5921(1987).
14. Massalsky, T. B., editor-in-chief, Binary Alloy Phase Diagrams, vol. 1, American Society for Metals, October, 1986. p. 385386.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed