Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-23T05:49:27.460Z Has data issue: false hasContentIssue false

Raman Spectroscopy Study of Damage in n+ - GaAs Introduced by H2 and CH4/H2 RIE

Published online by Cambridge University Press:  26 February 2011

I. De Wolf
Affiliation:
Interuniversity Microelectronics Center (IMEC vzw), Kapeldreef 75, B-3001, Leuven, Belgium
M. Van Hove
Affiliation:
Interuniversity Microelectronics Center (IMEC vzw), Kapeldreef 75, B-3001, Leuven, Belgium
R.-G. Pereira
Affiliation:
Interuniversity Microelectronics Center (IMEC vzw), Kapeldreef 75, B-3001, Leuven, Belgium
M. Van Rossum
Affiliation:
Interuniversity Microelectronics Center (IMEC vzw), Kapeldreef 75, B-3001, Leuven, Belgium
H. E. Maes
Affiliation:
Interuniversity Microelectronics Center (IMEC vzw), Kapeldreef 75, B-3001, Leuven, Belgium
H. Münder
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich, P.O. Box 1913, D- 5170 Jülich, Germany
Get access

Abstract

Raman spectroscopy is used to study crystal damage and electrical damage in n+-GaAs produced by reactive ion etching (REE). H2 RIE is compared with CH4/H2 RIE and the effect of temperature annealing is studied. The results are compared with C-V analysis. It is found that structural damage introduced by RIE in the surface layers of the sample is larger for the H2 plasma than for the CH4/H2 plasma. Annealing results in a decrease of this structural damage. H2 RIE as well as CH4/H2 RIE cause an increase of the inactive surface region. This increase is found to be larger for the H2 RDE. C-V experiments show that annealing results in a reactivation and associated decrease of the width of the inactive region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Niggebrügge, U., Klug, M. and Garus, G. in GaAs and related compounds (Inst. Phys. Conf. Ser. 79, Karuizana, Japan, 1985) pp. 367 - 372.Google Scholar
2. Pereira, R., Van Hove, M., De Raedt, W., Jansen, Ph., Borghs, G., Jonckheere, R. and Van Rossum, M.. J. Vac. Sci. Technol. B9 (4), Jul/Aug (1991).Google Scholar
3. Wagner, J. and Hoffman, Ch., Appl. Phys. Lett. 50 (11), 682 (1987).CrossRefGoogle Scholar
4. Aspnes, D. E. and Studna, A. A., Phys. Rev. B. 27 (2), 985 (1983).CrossRefGoogle Scholar
5. Abstreiter, G., Cardona, M. and Pinnczuk, A., in Light scattering in solids IV, edited by Cardona, M. and Giintherodt, G. (Springer-Verlag, Berlin, 1984), p. 108.Google Scholar
6. Cardona, M., in Light scattering in solids II, edited by Cardona, M. and Giintherodt, G. (Springer-Verlag, Berlin, 1982), p.130.Google Scholar
7. Farrow, L. A. and Sandroff, CJ., Proc. SPIE 822, 22 (1987)CrossRefGoogle Scholar
8. Collot, P. and Gaonach, C., Semicond. Sci. Technol. 5, 237 (1990).Google Scholar
9. Cheung, R., Thorns, S., Mclntyre, I., Wilkinson, C.D. and Beaumont, S.P., J. Vac. Sci. Technol. B 6 1911 (1988).CrossRefGoogle Scholar
10. Pearton, S. J., Dautremont-Smith, W.C., Chevallie, J., Tu, C. W. and Cummings, K. D., J. Appl. Phys. 52, 2821 (1986).CrossRefGoogle Scholar
11. Vandervorst, W. (private communication).Google Scholar