Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T15:31:00.367Z Has data issue: false hasContentIssue false

Raman Spectroscopy of Amorphous Carbon

Published online by Cambridge University Press:  10 February 2011

D. R. Tallant
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185–1411, drtalla@sandia.gov
T. A. Friedmann
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185–1411, drtalla@sandia.gov
N. A. Missert
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185–1411, drtalla@sandia.gov
M. P. Siegal
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185–1411, drtalla@sandia.gov
J. P. Sullivan
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185–1411, drtalla@sandia.gov
Get access

Abstract

Amorphous carbon is an elemental form of carbon with low hydrogen content, which may be deposited in thin films by the impact of high energy carbon atoms or ions. It is structurally distinct from the more well-known elemental forms of carbon, diamond and graphite. It is distinct in physical and chemical properties from the material known as diamond-like carbon, a form which is also amorphous but which has a higher hydrogen content, typically near 40 atomic percent. Amorphous carbon also has distinctive Raman spectra, whose patterns depend, through resonance enhancement effects, not only on deposition conditions but also on the wavelength selected for Raman excitation. This paper provides an overview of the Raman spectroscopy of amorphous carbon and describes how Raman spectral patterns correlate to film deposition conditions, physical properties and molecular level structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xiong, , Wang, Y. Y. and Chang, R. P. H., Phys. Rev. B 48, p. 8016 (1993).Google Scholar
2. Friedmann, T. A., McCarty, K. F., Barbour, J. C., Siegal, M. P. and Dibble, D. C., Appl. Phys. Lett. 68, 1643(1996).Google Scholar
3. Robertson, J., Prog. Solid State Chem. 21, p. 199 (1991).Google Scholar
4. Marks, N. A., McKenzie, D. R., Pailthorpe, B. A., Bernasconi, M. and Parrinello, M., Phys. Rev. Lett. 76, p. 768 (1996).Google Scholar
5. Nelson, S., Stechet, E. B., Wright, A. F., Plimpton, S. J., Schultz, P. A. and Sears, M. P., Phys. Rev. B 52, p. 9354 (1995).Google Scholar
6. Schultz, P. A. and Stechel, E. B., Phys. Rev. B (in press).Google Scholar
7. Gilkes, W. R., Sands, H. S., Batchelder, D. N., Robertson, J. and Milne, W. I., Appl. Phys. Lett. 70, p. 1980 (1997).Google Scholar
8. Wang, Y., Alsmeyer, D. C and McCreery, R. L., Chem. Mater. 2, p. 557 (1990).Google Scholar
9. Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53, p. 1126 (1970).Google Scholar
10. Merkulov, V. I., Lannin, J. S., Munro, C. H., Asher, S. A., Veerasamy, V. S. and Milne, W. I., Phys. Rev. Lett. 78, 4869 (1997).Google Scholar
11. Sullivan, J. P., Friedmann, T. A. and Baca, A.G., J. Electr. Mat. 26, p. 1021 (1996).Google Scholar
12. Yoshikawa, M., Mori, Y., Obata, H., Maegawa, M., Katagiri, G., Ishida, H. and Ishitani, A., Appl. Phys. Lett. 67, p. 694 (1995).Google Scholar
13. Poliak, F. H., Test and Measurement World, p. 2 (May, 1985).Google Scholar
14. Sullivan, J. P. and Friedmann, T. A., in Proc. First International Specialist Meeting on Amorphous Carbon, (World Scientific Publishing, Singapore, 1997), Cambridge U. K., 1997.Google Scholar
15. Maddams, W.F., American Laboratory, p. 59 (March, 1986).Google Scholar
16. See the cover and articles of the MRS bulletin, November, 1994.Google Scholar
17. Doyle, T. E. and Dennison, J. R., Phys. Rev. B. 51, p. 196 (1995).Google Scholar