Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T10:26:29.803Z Has data issue: false hasContentIssue false

Raman Spectroscopy Analysis of Nitrogen Ion Implantation in Silicon and Correlation with Transmission Electron Microscopy

Published online by Cambridge University Press:  25 February 2011

A. PéRez-Rodríguez
Affiliation:
LCMM, Departament de Física Aplicada i Electrònica, Universitat de Barcelona, Avda. Diagonal 645–647, E-08028 Barcelona, Spain.
A. Romano-Rodríguez
Affiliation:
LCMM, Departament de Física Aplicada i Electrònica, Universitat de Barcelona, Avda. Diagonal 645–647, E-08028 Barcelona, Spain.
J. R. Morante
Affiliation:
LCMM, Departament de Física Aplicada i Electrònica, Universitat de Barcelona, Avda. Diagonal 645–647, E-08028 Barcelona, Spain.
J. Esteve
Affiliation:
Centro Nacional de Microelectrónica (CNM-CSIC), Campus UAB, E-08193 Bellaterra, Spain.
J. Montserrat
Affiliation:
Centro Nacional de Microelectrónica (CNM-CSIC), Campus UAB, E-08193 Bellaterra, Spain.
Get access

Abstract

In this work Si samples implanted with nitrogen (N+ or N2+) at a dose of 1017 cm−2 are characterized by Raman spectroscopy and cross section transmission electron microscopy (XTEM). The correlation between the Raman spectra obtained with different excitation wavelengths and XTEM observations allows to determine the structural features related to the layers contributing to the total spectra. The evolution of these features with the annealing treatments (up to 1150°C) is studied. The results obtained show, after the annealing treatment at the highest temperature, the presence of silicon nitride precipitates in the silicon subsurface region, and the formation of a nitrogen rich polycrystalline Si layer with Si3N4 grains. The Raman spectra from the subsurface region show a remaining shift of -0.15 cm−1 when compared to the spectra from unimplanted Si. This shift, together with the similar shape of both Raman lines, suggests the presence in this region of an average tensile stress of 37.5 MPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Feijóo, D., Lehmann, V., Mitani, K. and Gösele, U.M., J. Electrochem. Soc. 139, 2309 (1992).Google Scholar
[2] Söderbärg, A., J. Electrochem. Soc. 139, 561 (1992).Google Scholar
[3] Gerasimenko, N. N. and Stas, V. F., Nucl. Instrum. Meth. Phys. Res. B65, 73 (1992).Google Scholar
[4] Jain, K. P., Shukla, A. K., Ashokan, R., Abbi, S. C. and Balkanski, M., Phys. Rev. B 32, 6688 (1985).Google Scholar
[5] Annasstasakis, E., in Proceedings ISPPME'85. Varna. Bulgaria: Physical Problems in Microelectronics, edited by Kassabov, J. (World Scientific Publishing Co., Singapore, 1985), p. 128.Google Scholar
[6] Takahashi, J. and Makino, T., J. Appl. Phys. 63, 87 (1988).Google Scholar
[7] Martin, E., Jiménez, J., Pérez-Rodríguez, A. and Morante, J. R., Mater. Lett. 15, 122 (1992).CrossRefGoogle Scholar
[8] Romano-Rodríguez, A., El-Hassani, A., Samitier, J., Pérez-Rodríguez, A., Martinez, S., Morante, J. R., Esteve, J., J, Montserrat, presented at the Eight Int. Conf. on Ion Beam Modification of Materials (Heidelberg, Germany, Sept. 1992). To be published in Nucl. Instrum. Meth. Phys. Res. B (1993).Google Scholar