Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T05:19:51.499Z Has data issue: false hasContentIssue false

Raman Characterization of Strained GaNyAs1-y and InxGa1-xNyAs1-y Epilayers

Published online by Cambridge University Press:  01 February 2011

Li-Lin Tay
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada K1A 0R6
David J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada K1A 0R6
James A. Gupta
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada K1A 0R6
Zbig R. Wasilewski
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada K1A 0R6
Get access

Abstract

Pseudomorphically strained epitaxial films of the ternary alloy GaNyAs1-y have been grown on GaAs(100) with y ranging from 0 to 0.05. The optical phonon Raman spectrum of the alloy displays a two-mode behavior. The GaAs-like first order modes are represented at y = 0.05 by the strong longitudinal optic (LO1) mode at 288.5 cm-1 and the weaker transverse optic (TO1) mode at 268.3 cm-1, while the GaN-like LO2 mode is observed at 474.8 cm-1. Two very broad disorder-induced acoustic bands are evident at 80 and 170 cm-1 due to atomic disorder within the crystalline network. Raman studies show that as the nitrogen concentration increases, the GaAs-like LO1 band shifts linearly towards lower wavenumber while the GaN-like LO2 phonon band displays a sub-linear increase in wavenumber. Raman results for the unstrained quaternary alloy In0.06Ga0.94N0.02As0.98 are compared with those of GaN0.02As0.98.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Weyers, M., Sato, M. and Ando, T., Jpn. J. Appl. Phys., part 1 31, L853 (1992)Google Scholar
2 Yu, P.Y. and Cardona, M., Fundamentals of semiconductors: physics and material properties, 2nd ed., Springer, 1999 Google Scholar
3 Gupta, J.A. Wasilewski, Z.R., Riel, B.J., Ramsey, J., Aers, G.C., Williams, R.L., Sproule, G.I., Perovic, A., Perovic, D.D., Garanzotis, T. and SpringThorpe, A. J., J. Cryst. Growth 242, 141 (2002)Google Scholar
4 lockwood, D.J., Dharma-wardana, M.W.C., Baribeau, J.-M., and Houghton, D.C., Phys. Rev. B. 35, 2243 (1987)Google Scholar
5 Mintairov, M., Blagnov, P.A., Melehin, V.G., Faleev, N.N., Tretyakov, V.M., Merz, J.L., Qiu, Y., Nikishin, S.A., and Temkin, H., Phys. Rev. B 56, 15836 (1997)Google Scholar
6 Prokofyeva, T., Sauncy, T., Seon, M., Holtz, M., Qiu, Y., Nikishin, S., and Temkin, H., Appl. Phys. Lett., 73, 1409 (1998)Google Scholar
7 Alt, H.C., Egorov, A.Y., Riechert, H., Wiedemann, B., Meyer, J.D., Michelmann, R.W., and Bethge, K., Appl. Phys. Lett. 77, 3331 (2000)Google Scholar
8 Hashimoto, A., Kitano, T., Nguyen, A.K., Masuda, A., Yamamoto, A., Tanaka, S., Takahashi, M., Moto, A., Tanabe, T., and Takagishi, S., Solar Energy Mat. & Solar cells, 75, 313 (2003)Google Scholar
9 Chang, I.F. and Mitra, S.S., Phys. Rev. 172, 924 (1968)Google Scholar