Skip to main content Accessibility help
×
Home

Radial Junction Architecture: A New Approach to Stable and Highly Efficient Silicon Thin Film Solar Cells

  • S. Misra (a1), M. Foldyna (a1), I. Florea (a1), L. Yu (a1) (a2) and P. Roca i Cabarrocas (a1)...

Abstract

Incorporation of properly designed nanostructures in solar cells improves light trapping and consequently their power conversion efficiencies. Due to its unique structure, a silicon nanowire (SiNW) matrix provides excellent light trapping and thus offers a promising approach for cost-effective, stable and efficient silicon thin film photovoltaics. Moreover, by decoupling the light absorption and carrier collection directions, radial junction solar cells built around the SiNWs allow the use of very thin active layers. As a matter of fact, radial PIN junctions with 9.2% power conversion efficiency have already been demonstrated on glass substrates with only 100 nm thick intrinsic hydrogenated amorphous silicon layers. The most straightforward way to further improve the short circuit current density is to use an active layer with a lower band gap. In this work, the performances of devices with two different low band gap materials, e.g., hydrogenated microcrystalline silicon (μc-Si:H) and hydrogenated amorphous silicon germanium alloy (a-SiGe:H) are presented. To the best of our knowledge, this is the first demonstration of a-SiGe:H radial junction solar cell.

Copyright

References

Hide All
1. Misra, S., Yu, L., Chen, W., Foldyna, M. and Roca i Cabarrocas, P., Journal of Physics D: Applied Physics, 47, p. 393001, 2014.
2. Garnett, E. and Yang, P., Nano Letters, vol. 10 (3), pp. 10821087, 2010.
3. Naughton, M. J., Kempa, K., Ren, Z. F., Gao, Y., Rybczynski, J., Argenti, N., Gao, W., Wang, Y., Peng, Y., Naughton, J. R., McMahon, G., Paudel, T., Lans, Y. C., Burns, M. J., Shepard, A., Clary, M., Ballif, C., Haug, F.-J., Söderström, T., Cubero, O. and Eminian, C., Physica Status Solidi-Rapid Research Letters, vol. 4 (7), pp. 181183, 2010.
4. Misra, S., Yu, L., Foldyna, M. and Roca i Cabarrocas, P., Solar Energy Materials and Solar Cells, vol. 118, pp. 9095, 2013.
5. Hsu, C.-M., Connor, S. T., Tang, M. X. and Cui, Y., Applied Physics Letters, vol. 93, p. 133109, 2008.
6. Peng, K.-Q., Yan, Y.-J., Gao, S.-P. and Zhu, J., Advanced Materials, vol. 14 (16), pp. 11641167, 2002.
7. Lu, Y. and Lal, A., Nano Letters, vol. 10 (11), pp. 46514656, 2010.
8. Jia, G., Eisenhawer, B., Dellith, J., Falk, F., Thøgersen, A. and Ulyashin, A., The Journal of Physical Chemistry C, vol. 117, pp. 10911096, 2013.
9. Wagner, R. S. and Ellis, W. C., Applied Physics Letters, vol. 4 (5), pp. 8990, 1964.
10. Červenka, J, Ledinský, M., Stuchlík, J., Stuchlíková, H., Bakardjieva, S., Hruška, K., Fejfar, A. and Kočka, J., Nanotechnology, vol. 21 (41), p. 415604, 2010.
11. Xie, X., Zeng, X., Yang, P., Wang, C. and Wang, Q., Journal of Crystal Growth, vol. 347, pp. 710, 2012.
12. Gunawan, O. and Guha, S., Solar Energy Materials and Solar Cells, vol. 93 (8), pp. 13881393, 2009.
13. Putnam, M. C., Boettcher, S. W., Kelzenberg, M. D., Turner-Evans, D. B., Spurgeon, J. M., Warren, E. L., Briggs, R. M., Lewis, N. S. and Atwater, H. A., Energy & Environmental Science, vol. 3 (8), pp. 10371041, 2010.
14. Adachi, M. M., Anantram, M. P. and Karim, K. S., Scientific Reports, vol. 3 (1546), 2013.
15. Misra, S., Yu, L., Foldyna, M. and Roca i Cabarrocas, P., IEEE Journal of Photovoltaics, vol. 5, No. 1, pp. 4045, 2015.
16. Hänni, S., Bugnon, G., Parascandolo, G., Boccard, M., Escarré, J., Despeisse, M., Meillaud, F. and Ballif, C., Progress in Photovoltaics: Research and Application, vol. 21 (5), pp. 821826, 2013.
17. Mackenzie, K. D., Phys. Rev. B, 31, 2198, 1985.
18. Matsuda, A., Koyama, M., Ikuchi, N., Imanishiand, Y. and Tanaka, K., J. J. Appl. Phys, 25, pp. 5456, 1986.
19. Schüttauf, J.-W., Niesen, B., Löfgren, L., Bonnet-Eymard, M., Stuckelberger, M., Hänni, S., Boccard, M., Bugnon, G., Despeisse, M., Haug, F.-J., Meillaud, F. and Ballif, C., Solar Energy Materials and Solar Cells, vol. 133, pp. 163169, 2015.

Keywords

Radial Junction Architecture: A New Approach to Stable and Highly Efficient Silicon Thin Film Solar Cells

  • S. Misra (a1), M. Foldyna (a1), I. Florea (a1), L. Yu (a1) (a2) and P. Roca i Cabarrocas (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed