Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T00:52:54.571Z Has data issue: false hasContentIssue false

Quasicrystals with 1-D Translational Periodicity and A Ten-Fold Rotation Axis

Published online by Cambridge University Press:  25 February 2011

L. Bendersky*
Affiliation:
Center for Materials Research, The Johns Hopkins University, Baltimore, MD and Institute for Materials Science and Engineering, National Bureau of Standards, Gaithersburg, MD
Get access

Abstract

Studies of phase formation in rapidly solidified Al-Mn alloys (composition range 18-22 at% Mn) show that an icosahedral phase is replaced by another noncrystallographic phase, a decagonal phase. The decagonal phase is another example of quasicrystal: It has a noncrystallographic point group (10/m or lO/mmm) together with long-range orientational order and onedimensional translational symmetry. The decagonal phase is an intermediate phase between an icosahedral phase and a crystal both from the symmetry and from the solidification condition points of view.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W., Phys. Rev. Lett., 53, 1951 (1984).Google Scholar
2.Bohr, H. A., “Almost Periodic Functions,” Chelsea, NY (1947).Google Scholar
3.Cahn, J. W., Shechtman, D., and Gratias, D., submitted to J. of Mat. Sci.Google Scholar
4.Portier, R., Shechtman, D., Gratias, D., Cahn, J. W., and Bigot, J., New Castle EMAG Conf. Proc. (1985).Google Scholar
5.Cornier, M., Portier, R., and Gratias, D., New Castle EMAG Conf. Proc. (1985).Google Scholar
6.Elser, V., Phys. Rev. Lett., 54, 1730 (1985).Google Scholar
7.Duneau, M. and Katz, A., Phys. Rev. Lett., 54, 2688 (1985).Google Scholar
8.Kalugin, P. A., Kitaev, A., and Levitov, L., JETP 41, 119 (1985).Google Scholar
9.Field, R. D. and Fraser, H. L., Mat. Sci. Eng., 68, L17 (1984-1985).Google Scholar
10.Ball, M. D. and Lloyd, D. L., Scr. Met., 19, 1065– (1985).Google Scholar
11.Pauling, L., Nature, 317, 512 (1985).Google Scholar
12.Ishimasa, T., Nissen, H. V., and Fukano, Y., Phys. Rev. Lett., 55, 511 (1985).Google Scholar
13.Bendersky, L., Schaefer, R. J., Biancaniello, F. S., Boettinger, W. J., Kaufman, M. J., and Shechtman, D., Scr. Met., 19, 909 (1985).Google Scholar
14.Bendersky, L., Phys. Rev. Lett., 55, 1461 (198).Google Scholar
15.Chattopadhyay, K., Lele, S., Ranganathan, S., Subbanna, G. N., and Thangaraj, N., Current Sci., 54, No. 18, 895, 1985.Google Scholar
16.Schaefer, R. J., Bendersky, L., Biancaniello, F. S., Boettinger, W. J. and Shechtman, D., submitted to Met. Trans.Google Scholar
17.Bancel, P., private communication.Google Scholar
18.Bendersky, L. and Biancaniello, F. S., unpublished results.Google Scholar