Skip to main content Accessibility help
×
Home

Quantum Diffusion of H(D) In Semiconductors and Metals, and The Role of the Interaction with Impurities

  • G. Cannelli (a1), R. Cantelli (a2), F. Cordero (a3), E. Giovine (a2) and F. Trequattrini (a2)...

Abstract

The mobility of hydrogen and its isotopes in metals has been the object of investigation for several years, whereas the diffusion studies of H in doped semiconductors started more recently. Although the H diffusion coefficient in metals may be several orders of magnitudes higher than in semiconductors, the dynamics of H in metals and semiconductors presents many common features, like precipitation, trapping by heavier impurities and, as indicated by recent results, quantum tunneling at low temperature.

In boron doped silicon, the relaxation rates τ−1(T) of H around B obtained from anelastic relaxation were joined with those from infrared absorption: the remarkably wide range obtained (11 decades) clearly shows a deviation of τ−1(T) from the classical dependence at low temperature. However, the results obtained and their analysis do not allow yet to draw conclusions on the mechanism governing the H(D) dynamics.

Recently, the investigation of the dynamics of H(D) in GaAs doped with Zn revealed a dissipation peak at 20 K in the kHz range. This relaxation has the highest rate found for H in a semiconductor: more than 15 orders of magnitude higher than in all the other semiconductors measured so far. The analysis of the dissipation curves clearly indicates that the nature of the H reorientation is quantistic.

In metals two regimes of the H mobility are observed: hopping with deviations from a classical Arrhenius motion, and a much faster tunneling within few close sites. In the latter regime the H dynamics does not consist of jumps but of transitions between the quantized energy levels of the tunnel systems. The types of interactions assisting the H transitions and the geometry of the tunnel systems are an open problem: although the two-level tunnel system (TLS) has been widely used to explain neutron diffusion, specific heat, and acoustic spectroscopy results in interstitial solutions (NbOxHy), recently this model has appeared not to be valid in substitutional solutions (NbZrxHy, NbTixHy) where the tunnel systems have a higher symmetry. The four-level systems seem to be more appropriate, although the corresponding model has not been developed as much as the TLS yet.

Copyright

References

Hide All
1. Zapp, P. E. and Birnbaum, H. K., Acta Metall. 28, 1523 (1980).
2. Sellers, G. J., Anderson, A. C. and Birnbaum, H. K., Phys. Rev. B 10, 2771 (1974).
3. Morkel, C., Wipf, H. and Neumaier, K., Phys. Rev. Lett. 40, 947 (1978); H. Wipf and K. Neumaier, ibid., 52, 1308 (1984).
4. Wipf, H., Magerl, A., Shapiro, S. M., Satija, S. K. and Thomlinson, W., Phys. Rev. Lett. 46, 947 (1981).
5. Magerl, A., Dianoux, A. J., Wipf, H., Neumaier, K. and Anderson, I. S., Phys. Rev. Lett. 56, 159 (1986).
6. Steinbinder, D., Wipf, H., Dianoux, A. J., Magerl, A., Neumaier, K., Richter, D. and Hempelmann, R., Europhys. Lett. 16, 211 (1991).
7. Poker, D. B., Setser, G. C., Granato, A. V. and Birnbaum, H. K., Z. Phys. Chem. 116, 39 (1979).
8. Poker, D. B., Setser, G. C., Granato, A. V. and Bimbaum, H. K., Phys. Rev. B 29, 622 (1984).
9. Cannelli, G. and Cantelli, R., Solid State Comm. 43, 567 (1982).
10. Cannelli, G., Cantelli, R. and Cordero, F., Phys. Rev. B 34, 7721 (1986).
11. Morr, W., M¨ller, A., Weiss, G., Wipf, H. and Golding, B., Phys. Rev. Lett. 63, 2084 (1989).
12. Jäckle, J., Piché, L., Arnold, W. and Hunklinger, S., J. Non-Crystalline Solids 20, 365 (1976).
13. Cannelli, G. and Cantelli, R., Cordero, F. and Trequattrini, F., Z. Phys. Chem. 179, 317 (1993); G. Cannelli, R. Cantelli and G. Vertechi, Appl. Phys. Lett. 39, 832 (1981).
14. Neumaier, K., Wipf, H., Cannelli, G. and Cantelli, R., Phys. Rev. Lett. 49, 1423 (1982).
15. Cannelli, G., Cantelli, R., Cordero, F. and Trequattrini, F., Phys. Rev. B 49, 15040 (1994).
16. Stavola, M., Bergman, K., Pearton, S. J., and Lopata, J., Phys. Rev. Lett. 61, 2786 (1988).
17. Cannelli, G., Cantelli, R., Capizzi, M., Coluzza, C., Cordero, F., Frova, A., and Presti, A. Lo, Phys. Rev. B 44, 11486 (1991).
18. Cheng, Y. M. and Stavola, M., Phys. Rev. Lett. 73, 3419 (1994).
19. Flynn, C. P. and Stoneham, A. M, Phys. Rev B 1, 3966 (1970).
20. Cannelli, G., Cantelli, R., Cordero, F., Giovine, E., Trequattrini, F., Capizzi, M., and Frova, A., Solid State Comm. 98, 873 (1996).
21. Cannelli, G. and Verdini, L., Ric. Sci. 36, 98 (1966); G. Cannelli and L. Verdini, Ric. Sci. 36, 246 (1966).
22. Baker, C. C. and Birnbaum, H. K., Acta Metall. 21, 865 (1973).
23. Mattas, R. F. and Bimbaum, H. K., Acta Metall. 23, 973 (1975).
24. Chen, C. G. and Bimbaum, H. K., Phy. Stat. Sol. (A) 36, 687 (1976).
25. Schaumann, G., Völkl, J. and Alefeld, G., Phys. Rev. Lett. 21, 891 (1968).
26. Cantelli, R., Mazzolai, F. M. and Nuovo, M., Phys. Stat. Sol. 34, 597 (1969).
27. Magerl, A., Rush, J. J. and Rowe, J. M., Phys. Rev. B 33, 2093 (1986).
28. Cannelli, G. and Cantelli, R., Proc. of the 6th International Conference on Internal Friction and Ultrasonic Attenuation in Solids, ICIFUAS-6, Tokyo 1977, edited by Hasiguti, R. R. and Mikoshiba, N. (University of Tokyo Press), p.491, 1979.
29. Cannelli, G., Cantelli, R. and Koiwa, M., Phil. Mag. A 46,483 (1982).
30. Tanaka, S. and Koiwa, M., Scripta Metall. 15, 403 (1981).
31. Cannelli, G. and Cantelli, R., Cordero, F. and Trequattrini, F., J. Alloys Comp. 211/212, 80 (1994).
32. Black, J. L., in: Glassy Metals I, Springer Topics in Applied Physics, Vol.46 (Springer, Berlin, 1981); Amorphous Solids, ed. by W.A. Phillips, Springer Topics in Applied Physics (Springer, Berlin, 1981).
33. Black, J. L. and Fulde, P., Phys. Rev. Lett. 43, 453 (1979).
34. Cannelli, G., Cantelli, R. and Cordero, F., Z. Phys. Chem. Neue Folge 164, 943 (1989).
35. Huang, K. F., Granato, A. V. and Bimbaum, H. K., Phys. Rev. B 32, 2178 (1985).
36. Kramer, E. J. and Bauer, C. L., Phys. Rev. 163, 407 (1967). 134
37. Val, P. P. Pal, Natsik, V. D. and Val, L. N. Pal, Low Temp. Phys. 21, 505 (1995).
38. Drescher-Krasicka, E. and Granato, A. V., J. de Physique C 10–46, 73 (1985).
39. Cannelli, G., Cantelli, R. and Cordero, F., Phys. Rev. B 35, 7264 (1987).
40. Svare, I., Phys. Rev. B 40, 11585 (1989).
41. Anderson, I. S., Heidemann, A., Bonnet, J. E., Ross, D. K., Wilson, S. K. P., and McKergow, , J. Less-Common Met. 101, 405 (1984).
42. 1. Svare, Torgeson, D. R., and Borsa, F., Phys. Rev. B 43, 7448 (1991).
43. Leisure, R. G., Schwarz, R. B., Migliori, A., Torgeson, D. R., Svare, I., and Anderson, I. S., Phys. Rev. B 48, 887 (1993).
44. Cannelli, G., Cantelli, R., Cordero, F., Trequattrini, F., Anderson, I. S., Rush, J. J., Phys. Rev. Lett. 67, 2682 (1991); G. Cannelli, R. Cantelli, F. Cordero, F. Trequattrini, Phys. Rev. B 55, 17865 (1997).

Quantum Diffusion of H(D) In Semiconductors and Metals, and The Role of the Interaction with Impurities

  • G. Cannelli (a1), R. Cantelli (a2), F. Cordero (a3), E. Giovine (a2) and F. Trequattrini (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed