Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T00:47:02.227Z Has data issue: false hasContentIssue false

A Quantitative Tunneling/Desorption Model for the Exchange Current at the Porous Electrode/Beta"- Alumina/Alkali Metal Gas Three Phase Zone at 700–1300K

Published online by Cambridge University Press:  15 February 2011

R. M. Williams
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109roger. m.williams@jpl.nasa.gov
M. A. Ryan
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109roger. m.williams@jpl.nasa.gov
C. Saipetch
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109roger. m.williams@jpl.nasa.gov
H. G. LeDuc
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109roger. m.williams@jpl.nasa.gov
Get access

Abstract

The exchange current observed at porous metal electrodes on sodium or potassium beta"-alumina solid electrolytes in alkali metal vapor is quantitatively modeled with a multi-step process with good agreement with experimental results. No empirically adjusted parameters were used, although some physical parameters have poor precision. Steps include: (1) diffusion of Na+ ions to the reaction site; (2) stretching of the Na+ ionic bond with the β3"-alumina surface to reach a configuration suitable for accepting an electron to form a surface bound Na0 atom; (3) electron tunneling from the Mo electrode to the ions; and (4) desorption of Na0 atoms weakly bound at the reaction site on the β"-alumina surface; (5) electron tunneling between Na0 or Na+ on the defect block and (6) Na0 and/or Na+ mobility on the spinel block surface may extend the reaction area substantially.

The rate is increasingly dominated by the region close to the three-phase boundary as temperature increases and the rate near the three-phase boundary increases fastest, because desorption has a higher energy than reorganization. At high temperatures, surface diffusion of Na+ ions from the defect block edges to the spinel block edges is responsible for an increase in the total effective reaction zone area near the three-phase boundary.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gurney, R.W., Proc. Royal Soc. A, 134, 137 (1931)Google Scholar
2. Gerischer, H., Zein. Phys. Chemin N. F., 26, 223; 325 (1960)Google Scholar
3. Williams, R.M., Jeffries-Nakamura, B., Underwood, M.L., Bankston, C.P., and Kummer, J.T., J. Electrochem. Soc., 137, 1716 (1990)Google Scholar
4. Williams, R.M., Jeffries-Nakamura, B., Underwood, M.L., Wheeler, B.L., Loveland, M.E., Kikkert, S.J., Lamb, J.L., Cole, T., Kummer, J.T. and Bankston, C.P., J. Electrochem. Soc., 136, 893 (1989)Google Scholar
5. Williams, R.M., Loveland, M.E., Jeffries-Nakamura, B., Underwood, M.L., Bankston, C.P., LeDuc, H., and Kummer, J.T., J. Electrochem. Soc., 137, 1709 (1990)Google Scholar
6. Williams, R.M., Kisor, A., Ryan, M. A., Jeffries-Nakamura, B., Kikkert, S., and O'Connor, D.E., 29th Intersociety Energy Conversion Engineering Conference Proceedings, 2, 888 (1994)Google Scholar
7. Schmidt, L. and Gomer, R., J. Chem. Phys., 42, 10 (1965)Google Scholar
8. Medvedev, V.K., Naumovets, A.G., and Fedorus, A.G., Soviet Phys.-Solid State, 12, 301 (1970)Google Scholar
9. Morin, R., Surface Science, 155, 187 (1985)Google Scholar
10. Li, Z., Lamb, R., Allison, W., and Willis, R., Surface Science, 211/212, 931 (1989)Google Scholar
11. Weber, N., Energy Conversion, 14, 1, (1974)Google Scholar
12. Mailhe, C., Visco, S., and DeJonghe, L., J. Electrochem. Soc., 134, 1121 (1987)Google Scholar
13. Williams, R.M., Jeffries-Nakamura, B., Underwood, M.l., O'Connor, D., Ryan, M.A., Kikkert, S., and Bankston, C.P., 25th Intersociety Energy Conversion Engineering Conference Proceedings, 2, 413 (1990)Google Scholar
14. Yao, Y. F. Y. and Kummer, J. T., J. Inorg. Nucl. Chem., 29, 2453, (1967)Google Scholar
15. Moseley, P. T., “The Solid Electrolyte” in The Sodium-Sulfur Battery edited by Sudworth, J.L. and Tilley, A. R.,(Chapman and Hall, New York, 1985) p44 Google Scholar
16. Ditchburn, R. and Gilmore, J., Rev. Mod. Phys., 13, 310 (1941)Google Scholar
17. Buck, U. and Pauly, H., Z. Phys. Chem., 44, 345 (1965)Google Scholar
18. Knotek, M., Phys. Rev. B, 14, 3406 (1976)Google Scholar
19. Lee, W. W., and Choi, S., J. Chem. Phys., 12, 3884, (1980)Google Scholar
20. Sato, H., “Some Theoretical Aspects of Solid Electrolytes” in Solid Electrolytes edited by Geller, S.,(Springer-Verlag, New York, 1977)Google Scholar
21. Kittel, C., Introduction to Solid-State Physics,(4th ed., John Wiley & Sons, New York, NY, 1977) pp. 239265 Google Scholar
22. Jani, A.R., Tripathi, G.S., Brener, N.E., and Callaway, J., Phys. Rev. B, 40 15931602 (1989)Google Scholar
23. Schiff, L. I., Quantum Mechanics, (3rd edition, McGraw-Hill Book Co., New York, 1968) pp 102104 Google Scholar