Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-05T09:30:24.171Z Has data issue: false hasContentIssue false

A Quantitative Model of Surface Segregation in III-V Ternary Compounds

Published online by Cambridge University Press:  10 February 2011

Sergey Yu. Karpov
Affiliation:
Soft Impact Ltd, P.O. Box 29, 194156 St.Petersburg, Russia
Yuri N. Makarov
Affiliation:
Fluid Mechanics Institute, University of Erlangen-Nüimberg, 4 Cauerstraße, 91058 Erlangen, Germany
Get access

Abstract

A quantitative model of surface segregation free from adjustable parameters is suggested for the growth of ternary III-V compounds. In contrast to previous approaches, the model considers the dynamics of surface population by the three elements producing the ternary alloy. The underlying assumption is that the atoms in the adsorption layer are in equilibrium with the crystal bulk. Elastic strain arising in the epitaxial layer due to the lattice constant mismatch with the substrate is found to be one of the key factors affecting segregation. Along with growth temperature, it controls the segregation efficiency and the composition profile evolution in a growing heterostructure. The effect of the V/III ratio, growth rate and other parameters is accounted for. Here, we apply the model to analyze the InGaAs growth by molecular beam epitaxy owing to the vast experimental data available for the model verification. The theoretical predictions show a good agreement with the experimental observations

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Massies, J., Turco, F., Saletes, A., Contour, J.P., J.Cryst.Growth, 80, 307 (1987).Google Scholar
[2] Moison, J.M., Guille, C., Houzay, F., Barthe, F., Rompay, M. Van, Phys.Rev.B, 40, 6149 (1989)Google Scholar
[3] Gerard, J.-M., d'Anterroches, C., J.Cryst.Growth, 150, 467 (1995).Google Scholar
[4] Kaspi, R.. Evans, K.R., Mat.Res.Soc.Symp.Proc., 379, 499 (1995).Google Scholar
[5] Evans, K.R., Kaspi, R., Ehret, J.E., Skowronski, M., Jones, C.R., J.Vac.Sci.Technol.B, 13, 1820 (1995).Google Scholar
[6] Kaspi, R.. Evans, K.R., Appl.Phys.Lett., 67, 819 (1995).Google Scholar
[7] Brandt, O., Tapfer, L., Ploog, K., Bierwolf, R., Hohenstein, M., Appl.Phys.Lett., 61, 2814 (1992).Google Scholar
[8] Chirlias, E., Massies, J., Guyaux, J.L., Moisan, H., Garcia, J.Ch., Appl.Phys.Lett., 74, 3972 (1999).Google Scholar
[9] Dehaese, O., Wallart, W., Molot, F., Appl.Phys.Lett., 66, 52 (1995).Google Scholar
[10] Yamaguchi, K., Okada, T., Hiwatashi, F., Appl.Surf.Sci., 117/118, 700 (1997).Google Scholar
[11] Grandjean, N., Massies, J., Leroux, M., Phys.Rev.B, 53, 998 (1996).Google Scholar
[12] Karpov, S.Yu., Maiorov, M.A., Surf Sci., 344, 11 (1995).Google Scholar
[13] Karpov, S.Yu., Maiorov, M.A., Surf.Sci., 393, 108 (1997).Google Scholar
[14] Alekseev, A.N., Karpov, S.Yu., J.Cryst.Growth, 162, 15 (1996).Google Scholar
[15] Muraki, K., Fukatsu, S., Shiraki, Y., Appl.Phys.Lett., 61, 557 (1992).Google Scholar