Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T11:30:35.818Z Has data issue: false hasContentIssue false

Quantitative Measurement of Interstitial Flux and Surface Super-saturation during Oxidation of Silicon

Published online by Cambridge University Press:  17 March 2011

M. S. Carroll
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
J. C. Sturm
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Get access

Abstract

During the oxidation of silicon, interstitials are generated at the oxidizing surface and diffuse into the silicon. Boron diffusion was used to map the local interstitial super-saturation, the ratio of interstitial concentration to the equilibrium concentration of interstitials I/I*, versus depth above buried Si0.795Ge0.2C0.005 layers during oxidation. The average interstitial supersaturation at the silicon surface, extrapolated from the depth profiles, is measured as, ∼24 and ∼11.5 for 750°C and 850°C respectively. Using the measured interstitial concentration at the surface, the silicon interstitial injection into the silicon is calculated for oxidation at 750°C and 850°C. Finally, it is found that the surface boundary condition remains fixed over an interstitial injection rate ranging over 4 orders of magnitude.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Scholz, R. F., Werner, P., Gosele, U., Tan, T. Y., Appl. Phys. Lett. 74, 392 (1999)10.1063/1.123081Google Scholar
[2] Carroll, M. S., Chang, C-L., Sturm, J. C., Buyuklimanli, T., Appl. Phys. Lett. 73, (3695)10.1063/1.122866Google Scholar
[3] Sturm, J. C., Schwartz, P. V., Prinz, E. J., Manoharan, H., J. Vac. Sci. Tech. B9, 2011 (1991)10.1116/1.585395Google Scholar
[4] Irene, E. A., J. Electrochem. Soc. 125, 1708 (1978)10.1149/1.2131277Google Scholar
[5] Skarlatos, D., Omri, M., Claverie, A., Tsoukalas, D., J. Electrochem. Soc. 146, 1999 (22762283)10.1149/1.1391927Google Scholar
[6] Antoniadis, D. A., Moskowitz, I., J. Appl. Phys. 53, 6788 (1982)10.1063/1.330067Google Scholar
[7] Pinto, M. R., Boulin, D. M., Rafferty, C. S., Smith, R. K., Coughran, W. M. Jr, Kizilyalli, I. C., and Thoma, M. J., in Tech. Digest IEDM, 1992, p923.Google Scholar
[8] Fair, R. B., 1981a, in Processing Technologies, edited by Khang, D., Applied Solid State Science, Supplement 2B, (Academic, NY). Pg. 1.Google Scholar
[9] Gossmann, H-J., Haynes, T. E., Stolk, P. A., Jacobson, D. C., Gilmer, G. H., Poate, J. M, Luftman, H. S., Mogi, T. K., Thompson, M. O., Appl. Phys. Lett. 71, 3862 (1997)10.1063/1.120527Google Scholar
[10] Bracht, H., Stolwijk, N. A., Mehrer, H., Phys. Rev. B 52, 16542 (1995)10.1103/PhysRevB.52.16542Google Scholar
[11] Werner, P., Gossmann, H-J., Jacobson, D. C., Gosele, U., Appl. Phys. Lett. 73, 2465 (1998)10.1063/1.122483Google Scholar
[12] Tsoukalas, D., private communication.Google Scholar
[13] Dunham, S. T., J. Appl. Phys. 71, 685 (1992)10.1063/1.351328Google Scholar