Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-25T11:44:24.558Z Has data issue: false hasContentIssue false

Quantitative Analysis of Chemically-Enhanced Sputtering during Ion Beam Deposition of Carbon Nitride Thin Films

Published online by Cambridge University Press:  03 September 2012

H. Hofsäss
Affiliation:
Universität Konstanz, Fakultät für Physik, Postfach 5560, D-78434 Konstanz, Germany
C. Ronning
Affiliation:
Universität Konstanz, Fakultät für Physik, Postfach 5560, D-78434 Konstanz, Germany
H. Feldermann
Affiliation:
Universität Konstanz, Fakultät für Physik, Postfach 5560, D-78434 Konstanz, Germany
M. Sebastian
Affiliation:
Universität Konstanz, Fakultät für Physik, Postfach 5560, D-78434 Konstanz, Germany
Get access

Abstract

The sputter losses during growth of carbon nitride thin films using mass selected ion beam deposition of C+ and N+ ions with energies between 20 eV and 500 eV are studied. Depending on the ion energy 35 – 100 % of C+ but only 3 – 35 % of N+ ions are incorporated in the films. Thus the films are always strongly nitrogen-deficient. To suppress the preferential loss of nitrogen we introduce the concept of continuously growing surface protective layers. Starting from a diamond-like carbon film as substrate, carbon nitride films are deposited using 100 eV 12C+ and 1 keV 14N+ ions, so that the growing films are always covered with a 1–2 rm thick protective layer of amorphous carbon. In this case we observe an increased nitrogen incorporation yielding to films with average film composition of C2N.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, A.Y. and Cohen, M.L., Science 245, 841 (1994).Google Scholar
2. Liu, A.Y. and Cohen, M.L., Phys. Rev. B41, 10727 (1990).Google Scholar
3. Marton, D., Boyd, K.J. and Rabalais, J.W., Int. J. Mod. Phys. B9, 3527 (1995).Google Scholar
4. Enders, B., Horino, Y., Tsubouchi, N., Chayahara, A., Kinomura, A., Fujii, K., Nucl. Instr. Meth. B (1997), in press.Google Scholar
5. Yu, K.M., Cohen, M.L., Haller, E.E., Hansen, W.L., Liu, A.Y. and Wu, I.C., Phys. Rev. B49, 5034(1994).Google Scholar
6. Niu, C., Lu, Y.Z. and Lieber, C.M., Science 261, 334 (1993).Google Scholar
7. Su, X.W., song, H.W., Zhang, Q.Y., Cui, F.Z., Nucl. Instr. Meth. B111, 59 (1996).Google Scholar
8. Yen, T.-Y., Chou, C.-P., Appl. Phys. Lett. 67, 2801 (1995).Google Scholar
9. Axén, N., Botton, G.A., Somekh, R.E., Hutchings, I.M., Diam. Relat. Mater. 5, 163 (1996).Google Scholar
10. Kumar, S., Tansley, T.L., Wielunski, L.S., J.Phys. D: Appl. Phys. 28, 2335 (1995).Google Scholar
11. Lieber, C.M. and Zhang, Z.J., Adv. Mater. 6, 497 (1994).Google Scholar
12. Kouvetakis, J., Bandari, A., Todd, M. and Wilkens, B., Chem. Mater. 6, 811 (1994).Google Scholar
13. Todorov, S.S., Marton, D., Boyd, K.J., Al-Bayati, A.H., Rabalais, J. W., J. Vac. Sci. Technol. A12, 3192 (1994).Google Scholar
14. Hofsäss, H.C., Ronning, C., Griesmeier, U., Gross, M., MRS Symp. Proc. 354, 93 (1995).Google Scholar
15. Hofsäss, H. and Ronning, C., in Proc. 2nd Int.Conf. on Beam Processing of Advanced Materials, eds. Singh, J., Copley, S. M., Mazumder, J., (ASM International, Materials Park, 1996) p. 29–56.Google Scholar
16. Hofsäss, H., Binder, H., Klumpp, T., Recknagel, E., Diam. Relat. Mater. 3, 137 (1994).Google Scholar
17. Ronning, C., Dreher, E., Thiele, J.-U., Oelhafen, P. and Hofsäss, H., Diam. Relat. Mater. 6 (1997), to be published.Google Scholar
18. Ziegler, J.F., Biersack, J.P. and Littmark, U., The stopping and ranges of ions in solids. (Pergamon press, Ney York, 1985).Google Scholar