Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-19T22:56:06.348Z Has data issue: false hasContentIssue false

Quantification and Characterization of the Thermal Degradation of TiSi2 Using Thermal Wave Analysis

Published online by Cambridge University Press:  25 February 2011

M. G. Fernandes
Affiliation:
Advanced Products R&D Laboratory, Motorola Inc., 3501, Ed Bluestein Boulevard, Austin, TX 78721
A. R. Sitaram
Affiliation:
Advanced Products R&D Laboratory, Motorola Inc., 3501, Ed Bluestein Boulevard, Austin, TX 78721
M. L. Kottke
Affiliation:
Advanced Technology Center, Motorola Inc., 5005, E. McDowell Road, Phoenix, AZ 85008
V. S. Kaushik
Affiliation:
R & QA Motorola Inc., 3501, Ed Bluestein Boulevard, Austin, TX 78721.
F. S. Pintchovski
Affiliation:
Advanced Products R&D Laboratory, Motorola Inc., 3501, Ed Bluestein Boulevard, Austin, TX 78721
Get access

Abstract

Thermal wave imaging can be used as a rapid non-destructive in-line probe to monitor defects in metals. In the study of the Ti-polysilicon system, this technique has been used to quantify the degradation of the suicide film by monitoring the formation of a second phase during BPSG annealing. The amount of second phase formed was found to vary with Ti preclean, dopant concentration and temperature of BPSG anneal on both blanket and patterned wafers. The second phase has been identified using TEM and AES to be a silicon rich phase. Digitized thermal wave images were used to obtain information regarding the size distribution of precipitates. These distributions have been correlated with resistivity changes in submicron suicide lines.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFErences

1. Phillips, J. R., Revesz, P., Olowolafe, J. O. and Mayer, J. W., Proc. Symp. Mater. Res. Soc. B 5.1 (1990).Google Scholar
2. Ting, C. Y., deHurle, F. M., Iyer, S. S. & Fryer, P. M., J. Electrochem Soc., 133 (12), 2621, (1986).CrossRefGoogle Scholar
3. Shenai, K., J. Mater. Res., 6(7), 1502, (1991).Google Scholar
4. Norstrom, H., Maex, K. and Vandenabeele, P., J. Vac. Sci. Technol. B 8(6), 1223, 1990.CrossRefGoogle Scholar
5. Burmester, R., Joswig, H., Mitwalsky, A., Proc. ESSDERC 1989.Google Scholar
6. Yoshida, T., Ogawa, S., Okuda, S., Kouzaki, T., and Tsukamoto, K., MRS Int'l Mtg. on Adv. Mats. Vol 10, p. 473 (1989).Google Scholar
7. Opsal, J., Taylor, M. W., Smith, W. L., Rosenswaig, A., J. App. Phys. 61, 240, (1987).CrossRefGoogle Scholar
8. Murarka, S. P., J. Vac. Sci. Technol., 4(6), 1325 (1986).Google Scholar
9. Ogawa, S., Yoshida, T., Kouzaki, T., Appl. Phys. Let. 56 (8), 725, (1990).CrossRefGoogle Scholar
10. van den Hove, L., Vanhellemont, J., Wolters, R., Ciaassen, W., De Keersmaecker, R. and Declerck, G.. Proc First Symp. Adv. Matr. ULSI. Eds. Scott, M., Akasaka, Y., Reif, R. pg. 165, The Electrochemical Soc. Penn, NJ, (1988).Google Scholar
11. Bhushan, B., Murarka, S.P., Proc. Symp. Mater. Res. Soc. B1l, 5 (1990).Google Scholar