Skip to main content Accessibility help

The Pyrolysis of a Tungsten Alkyne Complex as a Low Temperature Route to Tungsten Carbide

  • Richard N. Laine (a1) and Albert S. Hirschon (a1)


The synthesis of designed organometallic compounds and their selective activation and transformation into materials of high purity (for electronic applications), high strength and/or high temperature stability (for refrac-tory or structural applications), represents a potential area of extreme growth in organometallic chemistry. Research in this area could provide entirely new, inexpensive, fabrication methods for common and exotic materials.

In this paper, we develop design principles for the preparation of organometallic precursors, “premetallics” that can be selectively con-verted, in high yields, to a desired refractory metal. We also describe our preliminary efforts to prepare tungsten carbides (WCx) from a pre-metallic. Pyrolysis studies using Cp2W2(CO)4(DMAD) [DMAD = Dimethyl-acetylene dicarboxylate], 5, as the premetallic demonstrate that 5 will decompose at temperatures of ∼ 700°C to give good yields of W2C. 5 is soluble and decomposes fully in 10–20 minutes, without the need of another reactant.



Hide All
[1] Brookes, K.J.A., “World Directory and Handbook of Hardmetals,” 2nd Ed., Pub. by Engineers Digest, 1979, Hertfordshire, U.K.
[2] Blum, Y.D. and Laine, R.M., Organomet. Chem. in press (1986).
[3] Smith, G.P. and Laine, R.M., J. Phys. Chem. 85 1620 (1981).
[4] Smith, G.P., Golden, D.M. and Lewis, K.E., J. Am. Chem. Soc. 106, 39053911 (1984).
[5] Lewis, K.E. and Smith, G.P., J. Am. Chem. Soc. 106, 4650 (1984).
[6] Hess, P. and Parker, P.H., J. Appl. Polym. Sic. 10, 4650 (1966).
[7] Lashmore, D.S., Jesser, W. A., Schladitz, D. M., Schladitz, H.J., and Wilsdorf, H.G.F., J. Appl. Phys. 48, 478 (1977).
[8] Schrock, R.R., Listemann, M.L., Sturgeoff, L.G., J. Am. Chem. Soc. 104, 4389 (1982).
[9] Fischer, E.O., Schubert, U., J. Organomet. Chem. 100, 5981 (1975).
[10] Fischer, E.O., Linder, T. L. and Kreissl, R. R., J. Organomet. Chem. 112, C27–C30 (1976).
[11] Laine, R.M., Moriarty, R.E., and Bau, R., J. Am. Chem. Soc. 95, 1402 (1972).
[12] Laine, R.M. and Ford, P.C., J. Organomet. Chem. 124, 29 (1977).
[13] Slater, S. and Muetterties, E.L., Inorg. Chem. 19, 33373342 (1980).
[14] (a) Fischer, H., Motsch, A., Markl, R., and Ackermann, K., Organomet. 4, 726735 (1985).
(b) Wolfgruber, M., Sierber, W., Kreissl, F. R., Chem. Ber. 117, 427433 (1984) and references therein.
[15] Parker, H-Y., Klopfenstein, C.E., Wielesek, R.A. and Koenig, T., J. Am. Chem. Soc. 107, 52765277 (1985). This and the following two references are examples of the type of transition metal organometallic pyrolysis work currently being reported in the literature.
[16] Allison, N.T., Fritch, J.R., Vollhardt, P.C., and Walbrosky, E.C., J. Am. Chem. Soc. 105, 13841386 (1986).
[17] Adams, R.D., Mathur, P., and Segmmuller, B.E., Organomet. 3, 12581259 (1983).
[18] Yee, J.J., Internat. Metals, Rev. 1, 1942 (1978).

The Pyrolysis of a Tungsten Alkyne Complex as a Low Temperature Route to Tungsten Carbide

  • Richard N. Laine (a1) and Albert S. Hirschon (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed