Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T01:25:52.535Z Has data issue: false hasContentIssue false

Pulsed Ruby Laser Annealing of Zn, Mg, Se and Si Ion Implants in Semiconducting Gaas

Published online by Cambridge University Press:  15 February 2011

Douglas H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory**Oak Ridge, Tennessee, 37830
J. W. Cleland
Affiliation:
Solid State Division, Oak Ridge National Laboratory**Oak Ridge, Tennessee, 37830
W. H. Christie
Affiliation:
Solid State Division, Oak Ridge National Laboratory**Oak Ridge, Tennessee, 37830
R. E. Eby
Affiliation:
Solid State Division, Oak Ridge National Laboratory**Oak Ridge, Tennessee, 37830
Get access

Abstract

The properties of p+ and n+ layers formed by pulsed ruby laser annealing (PRLA) of shallow (Rp ~ 320–680 Å) implantations of Mg, Zn, Si and Se ions in both n- and p-type semiconducting GaAs have been evaluated using a combination of SIMS and electrical properties measurements. High activation (> 80%) was obtained for high dose (5 × 1015 ions/cm2 ) implants of both Mg and Zn, within a pulsed laser energy density “window” 0.5 ≤ Eλ ≤ 0.8 J/cm2 (FWHM pulse duration = 20–25 ns). SIMS measurements following PRLA show a wellbehaved increasing penetration of dopant ions into the GaAs substrate, with dopant ion concentrations well in excess of 1020 ions/cm3 in the near-surface region. Measured hole mobilities are consistent with the values anticipated for these high concentrations of ionized impurity scattering centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laser-Solid Interactions and Laser Processing – 1978 (AIP Conf. Proc. 50), Ferris, S. D., Leamy, H. J., Poate, J. M. eds. (American Inst. of Physics, New York 1979).Google Scholar
2. Laser and Electron Beam Processing of Materials, White, C. W., Peercy, P. S. eds. (Academic Press, New York 1980).Google Scholar
3. Wood, R. F., Lowndes, D. H., Christie, W. H., this Conference Proceedings (1980).Google Scholar
4. Cullis, A. G., Webber, H. C., Bailey, P., J. Phys. E: Sci. Instr. 12, 688 (1979).Google Scholar
5. Heraeus-Amersil, Sayreville, N. J. Google Scholar
6. White, C. W., Wilson, S. R., Appleton, B. R., Young, F. W. Jr. and Narayan, J., Ref. 2, p. 111.Google Scholar
7. White, C. W., Wilson, S. R., Appleton, B. R., Narayan, J., Ref. 2, p. 124; See also other papers in Part II of Ref. 2.Google Scholar
8. Wood, R. F., Wang, J. C., Giles, G. E., Kirkpatrick, J. R., Ref. 2, p. 37;Google Scholar
8a Wood, R. F., Appl.Phys. Lett. 37, 302 (1980).Google Scholar
9. Badawi, M. H., Sealy, B. J., Kular, S. S., Barrett, N. J., Emerson, N. G., Stephens, K. G., Booker, G. R., Hockley, M., Ref. 2, p. 354.Google Scholar
10. Eisen, F. H., Ref. 2, p. 309.Google Scholar
11. Young, R. T., Narayan, J., Westbrook, R. D., Wood, R. F., Ref. 1, p. 579, also reported approximately 80% activation for a Mg implant in GaAs.Google Scholar
12. Pianetta, P. A., Stolte, C. A., Hansen, J. L., Ref. 2, p. 328.Google Scholar
13. See, for example, the papers in Part VI of Ref. 2.Google Scholar
14. Sze, S. M., Irvin, J. C., Solid State Electron. 11, 599 (1968).Google Scholar
15. Lindhard, J., Scharff, M., Schiøtt, Kgl., H.E. Danske Videnskab Selskab. Mat. Fys. Medd. 33, No. 14 (1963).Google Scholar