Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T04:06:46.619Z Has data issue: false hasContentIssue false

Pulsed Laser Assisted Polycrystalline Growth of Oxide Thin Films for Efficient Processing

Published online by Cambridge University Press:  18 May 2012

Tomohiko Nakajima
Affiliation:
Flexible Chemical Coating Group, Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
Kentaro Shinoda
Affiliation:
Flexible Chemical Coating Group, Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
Tetsuo Tsuchiya
Affiliation:
Flexible Chemical Coating Group, Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
Get access

Abstract

We have investigated the polycrystalline growth by means of an excimer laser assisted metal organic deposition process and the strategy for the efficient growth. It was revealed that the pulsed photo thermal heating properties must be controlled by changing the laser fluence according to the substrate properties, such as thermal diffusivity. The threshold of the teff value for initial crystal nucleation is approximately 70 ns for oxide thin films. For the fabrication of good quality films with high crystallinity and without a laser ablation of the film surface, it is necessary that the irradiated laser fluence is adjusted to the conditions of teff (efficient annealing time) > 70 ns and Tmax (maximum temperature) < Tm (melting point). Obtained oxide films by using the pulsed UV laser has large crystallite size, and it well functioned to enhance physical properties of films. For further efficient growth for polycrystalline growth of the oxide films, the starting solution containing nanoparticles is very useful: it is named as photo-reaction of nanoparticles process.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Westerheim, A. C., Mcintyre, P. C., Basu, S. N., Bhatt, D., Yujahnes, L. S., Anderson, A. C. and Cima, M. J., J. Electron. Mater. 22, 1113 (1993).Google Scholar
2. Mihara, T., Yoshimori, H., Watanabe, H. and Araujo, C. A. P., Jpn. J. Appl. Phys. 34, 5233 (1995).Google Scholar
3. Avnir, D., Kaufman, V. R. and Reisfeld, R., J. Non-cryst. Solids 74, 395 (1985).Google Scholar
4. Brinker, C. J., Hurd, A. J. and Frye, G. C., J. Non-cryst. Solids 121, 294 (1990).Google Scholar
5. Nagase, T., Ooie, T. and Sakakibara, J., Thin Solid Films 357, 151 (1999).Google Scholar
6. Tsuchiya, T., Watanabe, A., Imai, Y., Niino, H., Yamaguchi, I., Manabe, T., Kumagai, T. and Mizuta, S., Jpn. J. Appl. Phys. 38, L823 (1999).Google Scholar
7. Lai, S. C., Lue, H-T., Hsieh, K. Y., Lung, S. L., Liu, R., Wu, T. B., Donohue, P. P. and Rumsby, P., J. Appl. Phys. 96, 2779 (2004).Google Scholar
8. Sandu, C. S., Teodorescu, V. S., Ghica, C., Canut, B., Blanchin, M. G., Roger, J. A., Brioude, A., Bret, T., Hoffman, P. and Garapon, C., Appl. Surf. Sci. 208209, 382 (2003).Google Scholar
9. Tsuchiya, T., Yoshitake, T., Shimakawa, Y., Yamaguchi, I., Manabe, T., Kumagai, T., Kubo, Y. and Mizuta, S., Jpn. J. Appl. Phys. 42, L956 (2003).Google Scholar
10. Nakajima, T., Tsuchiya, T., Ichihara, M., Nagai, H. and Kumagai, T., Chem. Mater. 20, 7344 (2008).Google Scholar
11. Nakajima, T., Tsuchiya, T., Ichihara, M., Nagai, H. and Kumagai, T., Appl. Phys. Express 2, 023001 (2009).Google Scholar
12. Tsuchiya, T., Yamaguchi, F., Morimoto, I., Nakajima, T. and Kumagai, T., Appl. Phys. A 99, 745 (2010).Google Scholar
13. Nakajima, T., Kitamura, T. and Tsuchiya, T., Appl. Catal. B 108109, 47 (2011).Google Scholar
14. Nakajima, T., Tsuchiya, T. and Kumagai, T., Appl. Phys. A 93, 51 (2008).Google Scholar
15. Nakajima, T., Tsuchiya, T. and Kumagai, T., Cryst. Growth Des. 10, 4861 (2010).Google Scholar
16. Azaroff, L. V., Elements of X-ray Crystallography, McGrawHill, New York (1968).Google Scholar