Skip to main content Accessibility help
×
Home

Pulsed Laser Ablation Growth and Doping of Epitaxial Compound Semiconductor Films

  • Douglas H. Lowndes (a1), Christopher M. Rouleau (a1), D. B. Geohegan (a1), A. A. Puretzky (a2), M. A. Strauss (a3), A. J. Pedraza (a3), J. W. Park (a3), J. D. Budai (a1) and D. B. Poker (a1)...

Abstract

Pulsed laser ablation (PLA) has several characteristics that are potentially attractive for the growth and doping of chemically complex compound semiconductors including (1) stoichiometric (congruent) transfer of composition from target to film, (2) the use of reactive gases to control film composition and/or doping via energetic-beam-induced reactions, and (3) low-temperature nonequilibrium phase formation in the laser-generated plasma “plume.” However, the electrical properties of compound semiconductors are far more sensitive to low concentrations of defects than are the oxide metals/ceramics for which PLA has been so successful. Only recently have doped epitaxial compound semiconductor films been grown by PLA. Fundamental studies are being carried out to relate film electrical and microstructural properties to the energy distribution of ablated species, to the temporal evolution of the ablation pulse in ambient gases, and to beam-assisted surface and/or gas-phase reactions. In this paper we describe results of ex situ Hall effect, high-resolution x-ray diffraction, transmission electron microscopy, and Rutherford backscattering measurements that are being used in combination with in situ RHEED and time-resolved ion probe measurements to evaluate PLA for growth of doped epitaxial compound semiconductor films and heterostructures. Examples are presented and results analyzed for doped II–VI, I–III–VI, and column-Ill nitride materials grown recently in this and other laboratories.

Copyright

References

Hide All
1 See Pulsed Laser Deposition of Thin Films, ed. by Chrisey, D. B. and Hubler, G. K., John Wiley and Sons, New York, 1994.
2 For selected references to early PLD of semiconductors, see the bibliography by Saenger, K. L., p. 581604 in Ref. 1.
3 Möller, H. J., Chap. 8 in Semiconductors for Solar Cells. Artech House, Norwood, MA, 1993.
4 “Pulsed Laser Deposition of Epitaxial AlN, GaN, and InN Thin Films on Sapphire(000l),” Feiler, D., Williams, R. S., Talin, A. A., Yoon, H., and Goorsky, M. S., submitted to J. of Crystal Growth.
5 “Pulsed Laser Deposition of Epitaxial GaN on Sapphire(000l),” Feiler, D., Williams, R. S., Talin, A. A., Yoon, H., Matney, K., and Goorsky, M. S., submitted to Applied Physics Letters.
6 McCamy, J. W., Lowndes, D. H., and Budai, J. D., Appi Phys. Lett. 63, 3008 (1993).
7 Lowndes, D. H., Rouleau, C. M., McCamy, J. W., Budai, J. D., Poker, D. B., Geohegan, D. B., Puretzky, A. A., and Zhu, Shen, p. 85 in Film Synthesis and Growth Using Energetic Beams. ed. by Atwater, H. A., Dickinson, J. T., Lowndes, D. H., and Polman, A., Materials Research Society, Pittsburgh, PA, 1995.
8 Rouleau, C. M., Lowndes., D. H. McCamy, J. W., Budai, J. D., Poker, D. B., Geohegan, D. B., Puretzky, A. A., and Zhu., Shen Appl. Phys. Lett. 67, 2545 (1995).
9 Shen, W. P. and Kwok, H. S., p. 91 in Film Synthesis and Growth Using Energetic Beams, ed. by Atwater, H. A., Dickinson, J. T., Lowndes, D. H., and Polman, A., Materials Research Society, Pittsburgh, PA, 1995.
10 Shen, W. P. and Kwok, H. S., p. 173 in New Materials for Advanced Solid State Lasers, ed. by Chai, B. H. T., Payne, S. A., Fan, T. Y., and Cassanho, A., Materials Research Society, Pittsburgh, PA, 1994.
11 Cheung, J. T. and Madden, J., J. Vac. Sci. Technol. B5, 705 (1987); see also J. T. Cheung, chap. 22 in Ref. 1.
12 Park, R. M. et al. , Appl. Phys. Lett. 57, 2127 (1990).
13 Ferreira, S. O. et al. , J. Cryst. Growth 140, 282 (1994).
14 Baron, T. et al. , Appl. Phys. Lett. 65, 1284 (1994).
15 Tuttle, J. R. et al. , Progress in Photovoltaics 3, 235 (1995); M. A. Contreras et al., Prog. in Photovoltaics 2, 287 (1994); A. M. Gabor et al., 12th NREL PV Program Review, AIP Conf. Proc. 303, 59 (1994).
16 Schock, H. W., Optoelectronics-Devices and Technologies 9, 511 (1994); H. W. Schock, Solar Energy Materials and Solar Cells 34, 19 (1994); T. Walter and H. W. Schock, 12th NREL PV Program Review, AIP Conf. Proc. 303, 67 (1994).
17 Cheung, J. T., Chap. 1 in Ref. 1.
18 Lowndes, D. H., Rouleau, C. M., Park, J.-W. et al. , manuscript in preparation.
19 See the paper by Rouleau, C. M., Lowndes, D. H., Strauss, M. A., Cao, S., Pedraza, A. J., Geohegan, D. B., Puretzky, A. A., and Allard, F., this symposium proceedings.
20 Geohegan, D. B. and Puretzky, A. A., p. 21 in Film Synthesis and Growth Using Energetic Beams, ed. by Atwater, H. A., Dickinson, J. T., Lowndes, D. H., and Polman, A., Materials Research Society, Pittsburgh, PA, 1995.
21 Geohegan, D. B., p. 115 in Pulsed Laser Deposition of Thin Films, ed. by Chrisey, D. B. and Hubler, G. K., Wiley, New York, 1994.
22 Vaudo, R. P., Cook, J. W. Jr., and Schetzina, J. F., J. Cryst. Growth 138, 430 (1994).
23 Nakao, T. and Uenoyama, T., Jpn. J. Appl. Phys. 32, 660 (1993).
24 Uenoyama, T., Nakao, T., and Suzuki, M., J. Cryst. Growth 138, 301 (1994).
25 Schaffler, R., Klose, M., Brieger, M., Dittrich, H., and Schock, H. W., Materials Science Forum 173174, 135 (1995).
26 Feiler, D., personal communication.
27 Moustakas, T. D. and Molnar, R. J., Mut. Res. Soc. Symp. Proc. 281, 753 (1993).
28 Nakamura, S.. Takashi, M., Senoh, M., and Iwasa, N.,. Jpn. J. Appl. Phys. 31, L139 (1992).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed