Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-21T22:04:43.606Z Has data issue: false hasContentIssue false

P-Type Quantum Well Infrared Photodetectors Grown by OMVPE

Published online by Cambridge University Press:  26 February 2011

W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A. Zussman
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. De Jong
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
B. F. Levine
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We report on the growth and fabrication of p-doped long wavelength GaAs/AlxGa1−x As quantum well infrared photodetectors (QWIP) grown by organometallic vapor phase epitaxy. The operation of these devices is based on the photocurrent induced through valence band intersubband absorption by holes and, unlike n-doped QWIPs, can utilize normal incidence illumination. Carbon and zinc were used as the p-type dopants in a low-pressure (30 Torr) vertical-geometry reactor. The Zn-doped QWIP consisted of fifty periods of 48 nm-thick undoped Al0.36Ga0.64As barriers and nominally 4 nm-thick doped GaAs quantum wells. Using normal incidence, a quantum efficiency of η = 2.5% and a detectivity of at 77K were obtained for a peak wavelength λp = 6.8 μm and a cutoff wavelength λ =7.6 μm. The C-doped QWIP had 54 nm-thick Al0.31Ga0.69As barriers and exhibited a normal incidence These initial studies indicate the superiority of carbon to zinc as the p-type dopant for these structures. The detectivity of the C-doped QWIPs is about four times less than n-doped QWIPs for the same λp but have the advantage of utilizing normal incidence illumination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Levine, B. F., Bethea, C. G., Hasnain, G., Shen, V. O., Pelve, E., Abbott, R. R. and Hseih, S. J., Appl. Phys. Lett. 56, 851 (1990) and references therein.CrossRefGoogle Scholar
[2] Janousek, B. K., Daugherty, M. J., Bloss, W. L., Rosenbluth, M. L., O'Loughlin, M. J., Kanter, H., De Luccia, F. J. and Perry, L. E., J. Appl. Phys. 67, 7608 (1990).CrossRefGoogle Scholar
[3] Andrews, S. R. and Miller, B. A., J. Appl. Phys. 70, 993 (1991).CrossRefGoogle Scholar
[4] Andersson, J. Y. and Lundqvist, L. and Paska, Z. F., Appl. Phys. Lett. 59, 857 (1991).CrossRefGoogle Scholar
[5] Yu, L. S. and Li, S. S., Appl. Phys. Lett. 59, 1332 (1991).CrossRefGoogle Scholar
[6] Hobson, W. S., Zussman, A., Levine, B. F., Pearton, S. J., Swaminathan, V., and Luther, L. C., Mat. Res. Soc. Symp. Proc. Vol. 216, 501 (1991).CrossRefGoogle Scholar
[7] Choi, K. K., Dutta, M., Newman, P. G., Saunders, M. L. and Iafrate, G. J., Appl. Phys. Lett. 57, 1348 (1990).CrossRefGoogle Scholar
[8] Hasnain, G., Levine, B. F., Bethea, C. G., Logan, R. A., Walker, J., and Malik, R. J., Appl. Phys. Lett. 54, 2515 (1989).CrossRefGoogle Scholar
[9] Goosen, K. W., Lyon, S. A., and Alavi, K., Appl. Phys. Lett. 53, 1027 (1988).CrossRefGoogle Scholar
[10] Levine, B. F., Gunapala, S. D., Kuo, J. M., Pei, S. S. and Hui, S., Appl. Phys. Lett. 59, 1864 (1991).CrossRefGoogle Scholar
[11] Chiu, L. C., Smith, J. S., Margalit, S., Yariv, A. and Cho, A. Y., Infrared Phys. 23, 93 (1983).CrossRefGoogle Scholar
[12] Pinczuk, A., Heiman, D., Sooryakumar, R., Goosard, A. C. and Wiegmann, W., Surf. Sci. 770, 573 (1986).CrossRefGoogle Scholar
[13] Karunasiri, R. P. G., Park, J. S., Mii, Y. J. and Wang, K. L., Appl. Phys. Lett. 57, 2585 (1990).CrossRefGoogle Scholar
[14] Chang, Y- C. and James, R. B., Phys. Rev. B39, 12672 (1989).CrossRefGoogle Scholar
[15] Wieck, A. D., Batke, E., Heitman, D. and Kotthaus, J. P., Phys. Rev. B30, 4653 (1984).CrossRefGoogle Scholar
[16] Tan, T. Y., Gösele, U., and Yu, S., Crit. Rev. Solid State Mater. Sci. 17, 47 (1991) and references therein.CrossRefGoogle Scholar
[17] Cunningham, B. T., Guido, L. J., Baker, J. E., Major, J. S. Jr, Holonyak, N. Jr, and Stillman, G. E., Appl. Phys. Lett. 55, 687 (1989).CrossRefGoogle Scholar
[18] Abernathy, C. R., Pearton, S. J., Ren, F., Hobson, W. S., Fullowan, T. R., Katz, A., Jordan, A. S., and Kovalchick, J., J. Cryst. Growth 105, 375 (1990).CrossRefGoogle Scholar
[19] Hobson, W. S., Harris, T. D., Abernathy, C. R., and Pearton, S. J., Appl. Phys. Lett. 58, 77 (1991).CrossRefGoogle Scholar