Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-25T16:12:32.494Z Has data issue: false hasContentIssue false

PtSi Contact Metallurgy by Different Formation Processes

Published online by Cambridge University Press:  26 February 2011

Chin-An Change
Affiliation:
IBM East Fishkill Facility, Hopewell Junction, N. Y. 12533
H. -C. Huang
Affiliation:
IBM East Fishkill Facility, Hopewell Junction, N. Y. 12533
A. Segmüller
Affiliation:
IBM East Fishkill Facility, Hopewell Junction, N. Y. 12533
F. E. Turene
Affiliation:
IBM East Fishkill Facility, Hopewell Junction, N. Y. 12533
B. Cunningham
Affiliation:
IBM East Fishkill Facility, Hopewell Junction, N. Y. 12533
A. Sugerman
Affiliation:
IBM East Fishkill Facility, Hopewell Junction, N. Y. 12533
P. A. Totta
Affiliation:
IBM East Fishkill Facility, Hopewell Junction, N. Y. 12533
Get access

Abstract

PtSi films have been formed using sputtered Pt and different annealing sequences and ambients. A clear dependence on the annealing sequence and ambient is observed for both the PtSi films and the passivating oxide layers formed. The single-temperature process at 550°C using forming gas (N2-H2 9:1), nitrogen and oxygen shows incomplete reactions between Pt and Si, with a surface oxide layer of poor resistance against etching in aqua regia. A three-temperature process using forming gas is shown to provide complete reactions between Pt and Si, with a surface oxide layer of excellent resistance against aqua regia. The three-temperature process using nitrogen or oxygen, however, fails to provide films of high quality, and the results are similar to those obtained by the single-temperature process in various gases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Murarka, S. P., J. Vac. Sci. Technol. B2, 693 (1984).Google Scholar
2. See, for example, Wittmer, M., J. Appl. Phys. 54, 5081 (1983), and references therein.Google Scholar
3. Kingzett, T. J. and Ladas, C. A., J. Electrochem. Soc. 122, 1729 (1975).Google Scholar
4. Blattner, R., Evans, C. A., Laum, S. S. Mayer, J. W., and Ullrich, B. M., J. Electrochem. Soc. 122, 1732 (1975).Google Scholar
5. Bindell, J. B., Colby, J. W., Wondidler, D. R., Poate, J. M., Conley, D. K., and Tisone, T. C., Thin Solid Films, 37, 441 (1976).Google Scholar
6. Canali, C., Catellani, C., Prudenaiati, M., Waldin, W. H., and Evans, C. A., Appl. Phys. Lett. 31, 43 (1977).Google Scholar
7. Nava, F., Valeri, S., Majni, G., Cemabali, A., Pignatel, G., and Queirolo, G., J. Appl. Phys. 52, 6641 (1981).Google Scholar
8. Crider, C. A. and Poate, J. M., Appl. Phys. Lett. 36, 417 (1980).Google Scholar
9. Chang, Chin-An and Chu, W. K., Appl. Phys. Lett. 37, 161 (1980).Google Scholar
10. Chang, Chin-An, J. Appl. Phys. 58, 1412 (1985).Google Scholar
Bartur, U.M. and Nicolet, M-A., J. Electrochem. Soc. 131, 371 (1984).Google Scholar
12. See, for example, Tu, K. N., J. Vac. Sci. Technol. 19, 766 (1981).Google Scholar
13. Anderson, R. M. and Reith, T. M., J. Electrochem. Soc. 122, 1337 (1975).Google Scholar
14. Chang, Chin-An, J. Appl. Phys. 58, 3258 (1985).Google Scholar
15. Chang, Chin-An, Segmüller, A., Huang, H.-C.W., Cunningham, B., Turene, F. E., Sugerman, A., and Totta, P. A., to be published.Google Scholar
16. See, for example, Lien, C.-D. and Nicolet, M-A., J. Vac. Sci. Technol. B2, 738 (1984).Google Scholar