Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-02T02:35:38.268Z Has data issue: false hasContentIssue false

Properties of IV-VI Narrow Gap Semiconductors on Fluoride Covered Silicon

Published online by Cambridge University Press:  28 February 2011

H. Zogg
Affiliation:
AFIF (Arbeitsgemeinschaft für industrielle Forschung) at Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
C. Maissen
Affiliation:
AFIF (Arbeitsgemeinschaft für industrielle Forschung) at Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
S. Blunier
Affiliation:
AFIF (Arbeitsgemeinschaft für industrielle Forschung) at Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
J. Masek
Affiliation:
AFIF (Arbeitsgemeinschaft für industrielle Forschung) at Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
V. Meyer
Affiliation:
AFIF (Arbeitsgemeinschaft für industrielle Forschung) at Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland Physik-Institut, University of Zürich, CH-8001 Zürich
R.E. Pixley
Affiliation:
Physik-Institut, University of Zürich, CH-8001 Zürich
Get access

Abstract

We present new results on structural and electronic properties of epitaxial lead chalcogenides on Si-substrates. A stacked MBE-grown CaF2/BaF2 buffer of 200 nm thickness serves to overcome the large lattice- and thermal expansion mismatches. Lead chalcogenide layers are grown by MBE or HWE with thicknesses of a few μm.

The X-ray rocking curve widths of these layers are below 200 arc sec. They are as low as curve widths of similar layers grown on bulk BaF2, or GaAs layers of comparable thicknesses on Si. The mechanical strain-state of the layers was determined with x-ray measurements and RBS channelling angular scans. Strain is below 4.10−4 at room temperature, indicating a near complete relaxation of the thermal and lattice misfit induced strains.

The quality of the layers is sufficient to integrate whole photovoltaic IR-sensor arrays.

We have fabricated linear arrays with cut-off wavelengths of 12 μm by using Pb1−xSnxSe, 5 μm with PbTe, and 3 - 4 gm with PbS and Pb1−xEuxSe. The structures withstand repeated cooling to the 80K operation temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Holloway, H., Physics of Thin Films, Academic Press, Haas, G., Francombe, M. H. Vol. 11, ed., 1980, p. 105.Google Scholar
[2] Tacke, M., Spanger, B., Lambrecht, A., Norton, P.R., Böttner, H., Appl. Phys. Lett. 53, 2260, 1988.Google Scholar
[3] Zogg, H., Höppi, M., Appl. Phys. Lett. 47, 133, 1985.Google Scholar
[4] Zogg, H., Blunier, S., Masek, J., J. Electrochem. Soc. 136, 775, 1989.Google Scholar
[5] Masek, J., Maissen, C., Zogg, H., Platz, W., Riedel, H., Königer, M., Lambrecht, A., Tacke, M., Nucl. Instr. & Meth. A288, 104, 1990 Google Scholar
[6] Chong, T.C., Fonstad, C.G., J. Vac. Sci. Technol. B5, 815, 1987.Google Scholar
[7] Tapfer, L., Martinez, J.R., Ploog, K., Semicond. Sci. Technol. 4, 617,1988.Google Scholar
[8] Hashimoto, S., Peng, J.L., Gibson, W.M., Schowalter, L.J., Fathauer, R.W., Appl. Phys. Lett.. 47, 1071, 1985.Google Scholar
[9] Zogg, H., Appl. Phys. Lett. 49, 933, 1986.Google Scholar
[10] Hohnke, D.K., Hurley, M.D., J. Appl. Phys. 47, 4975, 1976.Google Scholar
[11] Zogg, H., Blunier, S., Mat. Res. Symp. Proc. 91, 375, 1987.Google Scholar
[12] Zogg, H., Maissen, C., Masek, J., Blunier, S., Lambrecht, A., Tacke, M., Appl. Phys. Lett. 55, 970, 1989.Google Scholar
[13] Masek, J., Ishida, A., Zogg, H., Maissen, C., Blunier, S., IEEE Electron Dev. Left. 11, 12, 1990.Google Scholar