Skip to main content Accessibility help

The Properties of Ferroelectric Domain of PLT Thin Films Prepared by RF Magnetron Sputtering

  • Hong Liu (a1), Zhaohui Pu (a2), Zhihong Wang (a3), Huidong Huang (a4), Yanrong Li (a5), Dingquan Xiao (a6) and Jianguo Zhu (a7)...


Lanthanum-modified lead titanate (PLT) ferroelectric thin films were fabricated by the RF magnetron sputtering system on Pt/Ti/SiO2/Si(100) substrates. The x-ray diffraction (XRD) patterns of the PLT films showed that the pure perovskite structure was formed in the PLT thin films. The Piezoresponse Force Microscopy (PFM) was used for determining the domain structure of these films. It was found that the 90 degree domain was the main domain structure of PLT thin films. It was found that the PLT films prepared by RF sputtering have relatively large pyroelectric coefficient γ=2.20×10-8C·(cm2·K)-1 and relatively high figures of merit for current responsivity, voltage responsivity and specific detectivity.



Hide All
1 Lee, S. J., Kang, A. K. Y., Han, S. K., Jang, M. S., Chae, B. G., Yang, Y. S., Kim, S. H., Applied Physics Letters, 72, 299301 (1998).
2 Bune, A. V., Fridkin, V. M., Ducharme, S., Blinov, L. M., Palto, S. P., Sorokin, A.V., Yudin, S. G., Zlatkin, A., Nature, 391, 874877 (1998).
3 Kim, H. H., Sohn, K. S., Casas, L. M., Pfeffer, R. L., and Lareau, R. T., Journal of the Electrochemical Society, 142, 16401643 (1995).
4 Okazaki, K., Maiwa, H., and Ichinose, N., Electroceramics IV 1, 335338 (1994).
5 Bhaskar, S., Majumder, S. B., Fachini, E. R., and Katiyar, R. S., Journal of the American Ceramic Society, 87, 384390 (2004).
6 Tominaga, K., Miyajima, M., Sakashita, Y., Segawa, H., and Okada, M., Japanese Journal of Applied Physics, Part 2 (Letters), 29, 18741876 (1990).
7 Calzada, M. L., Bretos, I., Jimenez, R., Guillon, H., and Pardo, L., Advanced Materials, 16, 16201624 (2004).
8 Fan, H., Mater. Sci. Eng. B 120, 114118 (2005).
9 Chou, C. C., Chen, Ch. S., Ceramics International, 26, 693697 (2000).
10 Castellanos-Guzman, A. G., Trujillo-Torrez, M., Czank, M., Mater. Sci. Eng. B, 120, 5963 (2005).
11 Miller, P. B., Phys. Rev., 111, 736 (1958).
12 Sawoda, A., Abe, R, Jan. J. Appl. Phys., 6, 699 (1967).
13 Arlt, G., J. Mater. Sci., 25, 26552666 (1990).
14 Arlt, G., Hennings, D., and with, G. ge, J. Appl. Phys., 58, 16191625 (1985).
15 Kim, S. B., Chung, T. J., and Kim, D.Y., J. Eur. Ceram. Soc., 12, 147151 (1993).
16 Chung, S. W., Kim, Y. I., Park, H. L., and Lee, W. J., Journal of Materials Science: Materials In Electronics, 9, 383390 (1998).
17 Zhang, Q., and Whatmore, R. W., Journal of Applied Physics, 94, 52285233 (2003).
18 Tipton, C. W., Kirchner, K., Godfrey, R., Cardenas, M., Aggarwal, S., Li, H. and Ramesh, R., Appl. Phys. Lett., 77, 23882390 (2000).
19 Kang, D. H., Kim, K. W., Lee, S. Y., Kim, Y. H. and Gil, S. K., Materials Chemistry and Physics, 90, 411416 (2005).
20 Poyato, R., Gonzalez, A., Calzada, M. L., Pardo, L., Ferroelectrics, 271, 19751980 (2002).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed