Skip to main content Accessibility help
×
Home

The Properties of Dual Acceptor Delta-Doped ZnO Thin Films

  • T N. Oder (a1), R.C. Gade (a1) and C. Merlo (a1)

Abstract

We report the investigation of ZnO thin films delta-doped with lithium and phosphorus introduced simultaneously. The films were deposited from high purity ceramic targets of ZnO and Li3PO4 on c-plane sapphire substrates by RF magnetron sputtering. An undoped ZnO film with a low background electron concentration was used as the buffer layer on the sapphire substrate. The doped films were prepared by carrying simultaneous sputtering from the ZnO and Li3PO4 ceramic targets. For uniform doped films, the simultaneous deposition from the ZnO and Li3PO4 was uninterrupted. For the delta-doped films on the other hand, deposition from the ZnO target was uninterrupted while that from the Li3PO4 was interrupted periodically using a shutter. Post-deposition annealing was carried using a rapid thermal processor in O2 at 900 oC for 3 min. Results obtained from photoluminescence spectroscopy measurements at 12 K revealed acceptor-related luminescence peaks at 3.35 eV, possibly due to the transition from exciton bound to a neutral acceptor. The x-ray diffraction 2θ-scans showed a single peak at about 34.4o. Hall effect measurements revealed p-type conductivities with an average Hall concentrations of 3.8 x 1013 cm-3 in uniform doped samples and 1.5 x 1016 cm-3 in delta doped samples. However, in some cases the Hall coefficients had both positive and negative values, making the determination of the carrier type inconclusive. The fluctuation in the carrier type could be due to the lateral inhomogeneity in the hole concentration caused by signal noise impacting the small Hall voltages in the measurements.

Copyright

References

Hide All
1. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J. and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).10.1063/1.1992666
2. Duan, X. Y., Yao, R. H. and Zhao, Y. J.. Appl. Phys. A 91, 467 (2008).
3. Janotti, A. and Van deWalle, C. G., Phys. Rev. B 75, 165202 (2007).
4. Lyons, J. L., Janotti, A., and Van de Walle, C. G., Appl. Phys. Lett. 95, 252105 (2009).
5. Reynolds, J. G., Reynolds, C. L., Mohanta, A., Muth, J. F., Rowe, J. E., Everitt, H. O. and Aspnes, D. E., Appl. Phys. Lett. 102, 152114 (2013).
6. Look, D.C., Renlund, G.M., Burgener, R.H. II, and Sizelove, J.R., Appl. Phys. Lett. 85, 5269 (2004).
7. Limpinumnong, S., Smith, M.F., and Zhang, S.B., Appl. Phys. Lett. 89, 222113 (2006).
8. Lee, W.J., Kang, J., and Chang, K.J., Phys. Rev. B 73, 024117 (2006).
9. Lee, E.-C. and Chang, K.J., Phys. B 376377, 707 (2006).
10. McCluskey, M.D. and Jokela, S.J., J. Appl. Phys. 106, 071101 (2009).
11. Avrutin, V., Silversmith, D.J., and Morkoc, H.¸, Proc. IEEE Inst. Electr. Electron. Eng. 98, 1269 (2010).
12. Vlasenko, L.S. and Watkins, G.D., Phys. Rev. B 72, 035203 (2005).
13. Yamamoto, T., Phys. Status Solidi A 193, 423 (2002).
14. Tian, R.Y. and Zhao, Y.J., J. Appl. Phys. 106, 043707 (2009).
15. Lu, J.G., Zhang, Y.Z., Ye, Z.Z., Zhu, L.P., Wang, L., Zhao, B.H. and Liang, Q.L., Appl. Phys. Lett. 88, 222114 (2006).
16. Oder, T. N., Smith, A., Freeman, M., McMaster, M., Cai, B. and Nakarmi, M. L., J. Electron. Mater. 43(5) 1370–78 (2014).
17. Schubert, E.F., J. Vacuum Sci. Technol A 8(3) 29802996 (1990).
18. Harris, J.J., Journal of materials science: materials in electronics 4, 93105(1993).
19. Nakarmi, M. L., Kim, K. H., Li, J., Lin, J. Y., and Jiang, H. X., Phys. Lett 82 3041 (2003).
20. Jung, H. D., Song, C. D., Wang, S. Q., Arai, K., Wu, Y. H., Zhu, Z., and Yao, T., Appl. Phys. Lett. 70, 1143 (1997).
21. Oder, T.N., McMaster, M., Smith, A., Velpukonda, N., and Sternagle, D., Mater. Res. Soc. Proc. 1394, mrsf111394m1322 (2012).
22. Oder, T.N., Smith, A., Freeman, M., McMaster, M., Cai, B., and Nakarmi, M.L., MRS Proc. 1494, mrsf12-1494-z04-48 (2013).
23. Lee, Y. C., Hu, S. Y., Water, W., Tiong, K. K., Feng, Z. C., Chen, Y. T., Huang, J. C., Lee, J. W., Huang, C. C., Shen, J. L., Cheng, M. H.; J. Limin. 129, 148 (2009).
24. Sagar, P., Shishodia, P. K., Mehra, R. M., Okada, H., Wakahara, A., Yoshida, A., J. Lumin. 126, 800 (2007).
25. Cui, M. L., Wu, X. M., Zhuge, L. J., Meng, Y. D., Vacuum 81, 899 (2007).
26. Qin, X., Wang, J., Xie, J., Li, F., Wen, L. and Wang, X., Bull. Mater. Sci. 31(4), 681686 (2008).
27. Van de Walle, C. G., Phys. Status Solidi B 235, 89 (2003).
28. Gutowski, J., Presser, N., and Broser, I, Phys. Rev. B 38, 9746 (1988).
29. Look, D. C., Reynolds, D. C., Litton, C. W., Jones, R. L., Eason, D. B., and Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002).

Keywords

The Properties of Dual Acceptor Delta-Doped ZnO Thin Films

  • T N. Oder (a1), R.C. Gade (a1) and C. Merlo (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed