Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T05:51:29.674Z Has data issue: false hasContentIssue false

Properties of Catalytic-Cvd Amorphous Silicon-Germanium (a-SiGe:H)

Published online by Cambridge University Press:  25 February 2011

Hideki Matsumura
Affiliation:
Department of Physical Electronics, Hiroshima University, Saijo, Higashi-Hiroshima 724, Japan
Masaaki Yamaguchi
Affiliation:
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
Kazuo Morigaki
Affiliation:
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
Get access

Abstract

Hydrogenated amorphous silicon-germanium (a-SiGe:H) films are prepared by the catalytic chemical vapor deposition (Cat-CVD) method using a SiH4, GeH4 and H4 gas mixture. Properties of the films are investigated by the photo-thermal deflection spectroscopy (PDS) and electron spin resonance (ESR) measurements, in addition to the photo-conductive and structural studies. It is found that the characteristic energy of Urbach tail, ESR spin density and other photo-conductive properties of Cat-CVD a-SiGe:H films with optical band gaps around 1.45 eV are almost equivalent to those of the device quality glow discharge hydrogenated amorphous silicon (a-Si:H).

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Matsumura, H. and Tachibana, H., Appl. Phys. Lett., 47, 833 (1985)Google Scholar
Matsumura, H., Ihara, H. and Tachibana, H., Proc. of 18th IEEE Photovoltaic Specialist Conf., Las Vegas, 1985, p1277Google Scholar
3. Matsumura, H., Jpn. J. Appl. Phys., 25, L949 (1986)Google Scholar
4. Matsumura, H., J. Appl. Phys., 66, 3612 (1989)Google Scholar
5. Matsumura, H., Appl. Phys. Lett., 51, 804 (1987)Google Scholar
6. Matsumura, H., J. Appl. Phys., 65, 4396 (1989)Google Scholar
7. Matsumura, H., Mat. Res. Soc. Symp. Proc, vol.118 (1988, Material Reasearch Society) p43 Google Scholar
8. Tauc, J., Mater. Res. Bull., 5, 721 (1970)Google Scholar
9. Catalano, A., Newton, J.L., Arya, R.R. and Wiedeman, S., Tech. Digest of Int. PVSEC-3, Tokyo, 1987, p6l Google Scholar
10. Matsuda, A., Koyama, M., Ikuchi, N., Imanishi, Y. and. Tanaka, K., Jpn. J. Appl. Phys., 25, L54 (1986)Google Scholar
11. Yatabe, K., Ohta, H., Yamaguchi, M. and Morigaki, K., Phil. Mag. B., 60, 73 (1989)Google Scholar
12. Roedern, B.V., Mahan, A.H., Mcmahon, T.J. and Madan, A., Mat. Res. Soc. Sypm. Proc. vol.49 (1985, Material Research Society) pl67 Google Scholar
13. Caluculated from Fig.1 in Xi, J.P., Solar Cells, 21, 205 (1987)Google Scholar
14. Shimizu, T., Kumeda, M. and Kiriyama, Y., Solid State Commun., 37, 699 (1981)Google Scholar
15. Stutzmann, M. and Stuke, J., Solid State Commun., 47, 635 (1983)Google Scholar
16. Wu, Y. and Stesmans, A., J. Non-Cryst. Solids, 90, 151 (1987)Google Scholar