Skip to main content Accessibility help

Pronounced Photonic Effects of High-Pressure Water Vapor Annealing on Nanocrystalline Porous Silicon

  • Bernard Gelloz (a1), Takayuki Shibata (a2), Romain Mentek (a3) and Nobuyoshi Koshida (a4)


The effects of high-pressure water vapor annealing (HWA) on the refractive index of PS have been studied. HWA was conducted at 260 °C and 1.3 MPa, for 3 h. The refractive index (real part n and imaginary part k) was estimated by fitting reflectivity spectra. HWA considerably modifies the layers refractive index. It enhances the optical transparency of PS, particularly at short wavelengths down to below 400 nm. Both n and k are significantly reduced by HWA between 400 nm and 850 nm. These results are attributed to the high level of oxidation of PS after HWA. The high transparency of the treated layers enables Si-based photonics in the full visible range and also in the near UV range. Distributed Bragg reflectors (DBRs) have been fabricated. The central wavelengths appear blue-shifted compared to untreated samples due to the reduced refractive index. Almost no changes could be found in the reflectivity properties after one year storage in air for HWA-treated DBRs. Therefore, HWA is very useful for getting stable practical photonics devices in the visible and near UV range.



Hide All
1. Cullis, A. G., Canham, L. T. and Calcott, P. D. J., J. Appl. Phys. 82, 909 (1997)10.1063/1.366536
2. Gelloz, B. and Koshida, N., in The Handbook of Electroluminescent Materials, edited by Vij, D. R. (Institute of Physics Publishing, Bristol, 2004), Chap. 10, pp. 393475
3. Bisi, O., Ossicini, S. and Pavesi, L., Surf. Sci. Rep. 38, 5 (2000)10.1016/S0167-5729(99)00012-6
4. Reece, P. J., Lerondel, G., Zheng, W. H. and Gal, M., Appl. Phys. Lett. 81, 4895 (2002)10.1063/1.1531226
5. Ghulinyan, M., Oton, C. J., Bonetti, G., Gaburro, Z. and Pavesi, L., J. Appl. Phys. 93, 9724 (2003)
6. Tsybeskov, L., Duttagupta, S. P. and Fauchet, P. M., Solid State Commun. 95, 429 (1995)10.1016/0038-1098(95)00294-4
7. Gelloz, B., Nakagawa, T. and Koshida, N., Appl. Phys. Lett. 73, 2021 (1998)
8. Gelloz, B. and Koshida, N., J. Appl. Phys. 88, 4319 (2000)10.1063/1.1290458
9. Gelloz, B., Sano, H., Boukherroub, R., Wayner, D. D. M., Lockwood, D. J. and Koshida, N., Appl. Phys. Lett. 83, 2342 (2003)10.1063/1.1613812
10. Buriak, J. M., Chem. Rev. 102, 1271 (2002)10.1021/cr000064s
11. Gelloz, B., Kojima, A. and Koshida, N., Appl. Phys. Lett. 87, 031107 (2005)
12. Gelloz, B. and Koshida, N., J. Appl. Phys. 98, 123509 (2005)
13. Gelloz, B. and Koshida, N., Jpn. J. Appl. Phys., Part 1 45, 3462 (2006)
14. Gelloz, B., Shibata, T. and Koshida, N., Appl. Phys. Lett. 89, 191103 (2006)
15. EMIS Datareviews Series, edited by Canham, L. T. (INSPEC, The Institution of Electrical Engineers, London, 1997), Vol. 18, pp. 223246
16. Theiss, W., Arntzen, M., Hilbrich, S., Wernke, H., Arensfischer, R. and Berger, M. G., Phys. Status Solidi B 190, 15 (1995)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed