Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T01:43:54.283Z Has data issue: false hasContentIssue false

Production of Mo/si Multilayers At Increased Substrate Temperatures: The Effect On D-Spacing, Interface Roughness and Density.

Published online by Cambridge University Press:  15 February 2011

H.-J. Voorma
Affiliation:
Wiel FOM-Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
E. Louis
Affiliation:
Wiel FOM-Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
N.B. Koster
Affiliation:
Wiel FOM-Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
F. Bijkerk
Affiliation:
Wiel FOM-Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
M.J. van der
Affiliation:
Wiel FOM-Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
Get access

Abstract

To obtain the optimal growth conditions of Mo/Si multilayer structures, produced with e-beam evaporation, the effect of using enhanced deposition temperatures is investigated in detail. We describe the variations of the structure for multilayers deposited at substrate temperatures ranging from 300 K to 550 K. A temperature of 490 K was found to be the optimum resulting in low interface roughness and moderate inter-diffusion. The decrease of the dspacing at the optimum substrate temperature, compared to coatings deposited at room temperature, is explained by a change in free volume of the Si layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Louis, E., Bijkerk, F., Shmaenok, L., Voorma, H.-J., Wiel, M. v.d., Schlatmann, R., Verhoeven, J., Drift, E. v.d., Romijn, J., Rousseeuw, B., Voß, F., Désor, R., Nikolaus, B., Microelectron. Engrg. 21, 67 (1993)Google Scholar
2 Tanaka, K., Kado, M., Kodama, R., Ohtani, M., Kitamoto, S., Yamanaka, T., Yamashita, K., Nakai, S., Proc. SPIE, Vol. 1140, 502 (1989)Google Scholar
3 Barbee, T., Optical Engineering, Vol. 25, No. 8, 898 (1986)Google Scholar
4 Spiller, E., Appl. Phys. Lett. 54 (23), 2293 (1989)Google Scholar
5 Puik, E., Ven, S. v.d., Wolfis, W., Dorssen, G. van, Wiel, M. v.d., Proc. SPIE, Vol. 1547, 221 (1991)Google Scholar
6 Voorma, H.-J., Louis, E., Koster, N.B., Bijkerk, F., and Wiel, M. v.d., Physics of X-ray Multilayer Structures, O.S.A. Technical Digest Series, Vol. 6, 134 (1994)Google Scholar
7 Steams, M.B., Chang, C., Steams, D., J. Appl. Phys. 71 (1), 187 (1992)Google Scholar
8 Schlatmann, R., Lu, C., Puik, E.J., and Wiel, M.J. van der, Appl. Surf. Sci. 78, 147 (1994)Google Scholar
9 Saepen, F., in: Physics of Defects, edited by Balien, R., Kléman, M., Poirer, J.-P., Les Houches Lectures XXXV (North-Holland, Amsterdam, 1981), 136 Google Scholar
10 Udiyaou, Y., Azizan, M., Ameziane, E.L., Brunel, M. and Tan, T.A. Nguyen, Appl. Surf. Sci. 55, 165 (1992)Google Scholar
11 Walton, D., Rhodin, T.N., and Rollins, R.W., J. Chem. Phys. 38, 2698 (1963)Google Scholar