Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T02:07:57.637Z Has data issue: false hasContentIssue false

Production, Characterization, and Deposition of Carbon Clusters

Published online by Cambridge University Press:  28 February 2011

Y. K. Bae
Affiliation:
Molecular Physics Laboratory and Chemistry LaboratorySRI InternationalMenlo Park, CA 94025
D. C. Lorents
Affiliation:
Molecular Physics Laboratory and Chemistry LaboratorySRI InternationalMenlo Park, CA 94025
R. Malhotra
Affiliation:
Molecular Physics Laboratory and Chemistry LaboratorySRI InternationalMenlo Park, CA 94025
C. H. Becker
Affiliation:
Molecular Physics Laboratory and Chemistry LaboratorySRI InternationalMenlo Park, CA 94025
D. Tse
Affiliation:
Molecular Physics Laboratory and Chemistry LaboratorySRI InternationalMenlo Park, CA 94025
L. Jusinski
Affiliation:
Molecular Physics Laboratory and Chemistry LaboratorySRI InternationalMenlo Park, CA 94025
Get access

Abstract

We have developed a new cluster ion source that can generate intense beams of metal and semiconductor clusters of a very wide-size range. With the source, we have observed intense beams of carbon clusters with mean cluster sizes of up to 4000 atoms/clusters. However, we have found that for generating small fullerenes, such as C60 and C70, the recently discovered technique by Kraetschmer et al. is much more efficient. By improving the technique, we have generated gram quantities of C60 and C70 and systematically investigated their thermal desorption properties. During the heating process, we have discovered that at high temperatures the bulk fullerenes, fullerite, transformed to another form of carbon, which still evaporates at temperatures above 700 C, but does not dissolve in benzene.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kraetschmer, W., Lamb, L. D., Fosteropoulous, K., and Huffman, D. R., Nature 347, 354, (1990).Google Scholar
2. Curl, R. F. and Smalley, R. E., Science 242, 1017 (1988).Google Scholar
3. Kroto, H., ibid, 1139.Google Scholar
4. Cox, D. M., Reichmann, K. C., and Kaldor, A., J. Chem. Phys. 88, 1588 (1988).Google Scholar
5. Haufler, R. E., Conceicao, J., Chibante, L. P. F., Chai, Y., Byrne, N. E., Flanagan, S., Haley, M. M., O’Brien, S. C. Pan, C., Xiao, Z., Billups, W. E., Ciufolini, M. A., Hauge, R. H., Margrave, J. L., Wilson, L. J., Curl, R. F., and Smalley, R. E., J. Phys. Chem. 94, 8634 (1990).Google Scholar
6. Zych, L. J. and Young, J. F., IEEE J. Quantum Electron. 14, 147 (1978).Google Scholar
7. Pallix, J. B., Schuele, U., Becker, C. H., and Huestis, D. L., Anal. Chem. 61, 805 (1990).Google Scholar
8. Larsson, S., Volosove, A., and Rosen, A., Chem. Phys. Lett. 137, 501 (1987).CrossRefGoogle Scholar