Skip to main content Accessibility help
×
Home

Producing ultrashort Terahertz to UV photons at high repetition rates for research into materials

Abstract

A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on a Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches.

These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ∼ half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power (see G. P. Williams, this conference).

The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300–1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation.

The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser vapor deposition, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the opportunities provided by this unique light source for modifying and studying materials.

Copyright

References

Hide All
1. Carr, , et al., Nature 420, 153156 (2002).
2. Neil, , et al., Phys. Rev. Lett. 84, 662665 (2000).
3. Douglas, D. R., et al., Proc. Linac 2000, Monterey, August 21–25, 2000.
4. Benson, S. V., Biallas, G., Boyce, J., Douglas, D., Dylla, H. F., Evans, R., Grippo, A., Gubeli, J., Jordan, K., Krafft, G., Li, R., Mammosser, J., Merminga, L., Neil, G. R., Phillips, L., Preble, J., Shinn, M., Siggins, T., Walker, R., and Yunn, B., Proceedings: 2001 Particle Accelerator Conference, Lucas, Peter W., Webber, Sara, editors, IEEE, Piscataway, NJ, 2001.
5. Siggins, Tim, Sinclair, Charles, Bohn, Court, Bullard, Donald, Douglas, David, Grippo, Al, Gubeli, Joe, Krafft, Geoffrey A, Yunn, Byung, Nucl. Instr. And Meth., A475, 549 (2001).
6. Delayen, J. R. et al., PAC’99, pp. 934–6, New York, 29 March-2 April, 1999.
7. Flanz, J. et al., Nucl. Inst. Meth. A241:325–33 (1985).
8. Benson, S., Nucl. Inst. And Meth. In Phys. Res., A507, 4043 (2003).
9. Benson, S., Proc. 23rd Int'l FEL Conf., Darmstadt, Germany, August 20–24, 2001. To be published in Nucl. Instr. and Meth.
10. Neil, G. R., et al., Phys. Rev. Letter, 87, 84801 (2001).
11. Boyce, J.R., “Intra-cavity Thomson Scattering,” Section 2.5.2, Femtosecond Beam Science, ed. M. Uesaka, World Scientific, In Press.
12. Benson, S., Shinn, Michelle, and Neil, G. R., Nucl. Instr. and Meth. A475 531 (2001).
13. Dylla, H. F., Laser Focus World, August 2001.
14. Kelley, M. J., et al, SPIE Int'l. Society for Optical Eng., Issue 2703 pp. 1520 (1996).
15. Dylla, H. F., SPIE Vol. 3618 (1999).
16. Dylla, H. F. et al., SPIE Vol. 3925 4049, (2000).
17. Austin, R., Phys. Rev. Letter 84, 5435 (2000).
18. Budde, M. et al., Phys. Rev. Letter 85, 1452 (2000).
19. Lupke, G., Zhang, X., Sun, B., Fraser, A., Tolk, N. H., and Feldman, L. C., Phys. Rev. Lett. 88, 135501 (2002).
20. Shinn, M., SPIE Vol. 4065, 434440 (2000).
21. Kelley, Michael J. in Kumar, D. et al. (Eds.), Laser-Solid Interactions for Materials Processing Proc. Mat. Res. Soc. Symp., 617 (2000).
22. Carpene, E. and Schaaf, P., Mat. Res. Soc. Symp. Proc. 780, Y5.8.1 (2003).
23. Eklund, P. C., Pradhan, B. K., Kim, U. J., Xiong, Q., Fischer, J. E., Friedman, A. D., Holloway, B. C., Jordan, K. and Smith, M. W. Nano Letters 2, 561 (2002).
24. Helvajian, H. (Ed.), Microengineering Aerospace Systems, AIAA, Reston, VA (1999).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed