Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T09:14:36.725Z Has data issue: false hasContentIssue false

Processing Natural and Reconstituted Silk Solutions Under Equilibrium and Non-Equilibrium Conditions

Published online by Cambridge University Press:  15 February 2011

Christopher Viney
Affiliation:
Molecular Bioengineering Program, Center for Bioengineering WD-12, Univ. of Washington, Seattle, WA 98195, USA
Anne E. Huber
Affiliation:
Molecular Bioengineering Program, Center for Bioengineering WD-12, Univ. of Washington, Seattle, WA 98195, USA
Dwayne L. Dunaway
Affiliation:
Molecular Bioengineering Program, Center for Bioengineering WD-12, Univ. of Washington, Seattle, WA 98195, USA
Steven T. Case
Affiliation:
Dept. of Biochemistry, Univ. of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
David L. Kaplan
Affiliation:
US Army Research, Development & Engineering Center, Natick, MA 01760, USA
Get access

Abstract

A variety of natural silk secretions (from spiders, silkworms and aquatic insect larvae), and also reconstituted silk solutions, are able to form a nematic liquid crystalline phase. The anisotropic structures that self-assemble in this phase are formed from the isotropic phase by aggregation of molecules, rather than by individual molecules undergoing a conformational change to a rod-like form. This enables the molecules to retain their solubility in water while, simultaneously, the viscosity of the solution is reduced. The liquid crystalline phase is stable under a wide range of equilibrium conditions, but its ability to form is sensitive to the rate at which the initially isotropic solution is allowed to dry. The kinetics of phase transitions exhibited by solutions of silk proteins must be taken into account if solutions of silk fibroin are to be successfully processed in vitro.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cox, M.K., Molecular Crystals and Liquid Crystals 153, 415 (1987).Google Scholar
2. Ryan, T.G., Molecular Crystals and Liquid Crystals 157, 577 (1988).Google Scholar
3. Collings, P.J., Liquid Crystals: Nature's Delicate Phase of Matter (Princeton Univ. Press, Princeton, NJ, 1990).Google Scholar
4. Weiss, R.A. and Ober, C.K., eds, Liquid-Crystalline Polymers (American Chemical Society, Washington, DC, 1990).Google Scholar
5. Donald, A.M. and Windle, A.H., Liquid Crystalline Polymers (Cambridge University Press, Cambridge, U.K., 1992).Google Scholar
6. Suzuki, A., Maeda, T. and Ito, T., Biophysical Journal 59, 25 (1991).Google Scholar
7. Kerst, A., Chmielewski, C., Livesay, C., Buxbaum, R.E. and Heidemann, S.R., Proceedings of the National Academy of Sciences, USA 87, 4241 (1990).Google Scholar
8. April, E.W., Nature 257, 139 (1975).Google Scholar
9. Giraud-Guille, M.-M., Molecular Crystals and Liquid Crystals 153, 15 (1987).Google Scholar
10. Kerkam, K., Viney, C., Kaplan, D.L. and Lombardi, S.J., Nature 349, 596 (1991).Google Scholar
11. Gray, D.G., Journal of Applied Polymer Science: Applied Polymer Symposia 37, 179 (1983).Google Scholar
12. Livolant, F., Journal de Physique 47, 1605 (1986).Google Scholar
13. Viney, C., Huber, A.E. and Verdugo, P., in Fundamentals of Biodegradable Materials and Packaging, edited by Kaplan, D.L., Thomas, E.L., and Ching, C. (Technomic, Lancaster, PA, 1992 in press).Google Scholar
14. Strzelecka, T.E., Davidson, M.W. and Rill, R.L., Nature 331,457 (1988).Google Scholar
15. Livolant, F., Levelut, A.M., Doucet, J. and Benoit, J.P., Nature 339, 724 (1989).Google Scholar
16. Rill, R.L., Livolant, F., Aldrich, H.C. and Davidson, M.W., Chromosoma 98, 280 (1989).Google Scholar
17. Verhas, J., Liquid Crystals 3, 1183 (1988).Google Scholar
18. Chapman, D., in Liquid Crystals: Applications and Uses, edited by Bahadur, B. (World Scientific, Singapore, 1991) p. 185.Google Scholar
19. Lipowsky, R., Nature 349, 475 (1991).Google Scholar
20. Zemlin, J.C., A study of the mechanical behavior of spider silks, Report No. 69-29-CM (AD 684333), U.S. Army Natick Laboratories, 1968.Google Scholar
21. Gosline, J.M., DeMont, M.E. and Denny, M.W., Endeavour 10, 37 (1986).Google Scholar
22. Kaplan, D.L., Lombardi, S.J., Muller, W.S. and Fossey, S.A., in Biomaterials: Novel Materials from Biological Sources, edited by Byrom, D.(Stockton Press, New York, 1991) p. 3.Google Scholar
23. Kaplan, D.L., Fossey, S., Mello, C.M., Arcidiacono, S., Senecal, K., Muller, W., Stockwell, S., Beckwitt, R., Viney, C. and Kerkam, K., MRS Bulletin 17 (10), 41 (1992).Google Scholar
24. Foelix, R.F., Biology of Spiders (Harvard University Press, Cambridge, MA, 1982).Google Scholar
25. Case, S.T. and Wieslander, L., in Structure, Cellular Synthesis and Assembly of Biopolymers, edited by Case, S.T. (Springer-Verlag, Berlin, 1992) p. 187.Google Scholar
26. Lucas, F., Shaw, J.T.B. and Smith, S.G., in Advances in Protein Chemistry, edited by Anfinsen, C.B., Anson, M.L., Bailey, K. and Edsall, J.T. (Academic Press, New York, 1958) p. 107.Google Scholar
27. Peakall, D.B., Journal of Experimental Zoology 176, 257 (1971).Google Scholar
28. Kerkam, K., Kaplan, D.L., Lombardi, S.J. and Viney, C., in Materials Synthesis Based on Biological Processes, edited by Alper, M., Calvert, P.D., Frankel, R., Rieke, P.C. and Tirrell, D.A. (Materials Research Society, Pittsburgh, 1991) p. 239.Google Scholar
29. Viney, C., Kerkam, K., Gilliland, L.K., Kaplan, D.L. and Fossey, S., in Complex Fluids, edited by Sirota, E.B., Weitz, D., Witten, T. and J. Israelachvili (Materials Research Society, Pittsburgh, 1992) p. 89.Google Scholar
30. Yamaura, K., Okumura, Y., Ozaki, A. and Matsuzawa, S., Journal of Applied Polymer Science: Applied Polymer Symposium 41, 205 (1985).Google Scholar
31. Viney, C., in Structure, Cellular Synthesis and Assembly of Biopolymers, edited by Case, S.T. (Springer Verlag, Heidelberg, 1992) p. 255.Google Scholar
32. Asakura, T., Makromoleculare Chemie, Rapid Communications 7, 755 (1986).Google Scholar
33. Zheng, S., Li, G., Yao, W. and Yu, T., Applied Spectroscopy 43, 1269 (1989).Google Scholar
34. Iizuka, E., Journal of Applied Polymer Science: Applied Polymer Symposia 41, 163 (1985).Google Scholar
35. Porter, D.A. and Easterling, K.E., Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Wokingham, U.K., 1984)Google Scholar