Skip to main content Accessibility help

Process and Manufacturing Challenges for High-K Gate Stack Systems

  • M.C. Gilmer (a1), T-Y Luo (a1), H.R. Huff (a1), M.D. Jackson (a1), S. Kim (a1), G. Bersuker (a1), P. Zeitzoff (a1), L. Vishnubhotla (a1), G.A. Brown (a1), R. Amos (a1), D. Brady (a1), V.H.C. Watt (a1), G. Gale (a1), J. Guan (a1), B. Nguyen (a1), G. Williamson (a1), P. Lysaght (a1), K. Torres (a1), F. Geyling (a1), C.F.H. Gondran (a1), J. A. Fair (a2), M.T. Schulberg (a2) and T. Tamagawa (a3)...


A design-of-experiments methodology was implemented to assess the commercial equipment viability to fabricate the high-K dielectrics Ta2O5, TiO2 and BST (70/30 and 50/50 compositions) for use as gate dielectrics. The high-K dielectrics were annealed in 100% or 10% O2 for different times and temperatures in conjunction with a previously prepared NH3 nitrided or 14N implanted silicon surface. Five metal electrode configurations—Ta, TaN, W, WN and TiN—were concurrently examined. Three additional silicon surface configurations were explored in conjunction with a more in-depth set of time and temperature anneals for Ta2O5. Electrical characterization of capacitors fabricated with the above high-K gate dielectrics, as well as SIMS and TEM analysis, indicate that the post high-K deposition annealing temperature was the most significant variable impacting the leakage current density, although there was minimal influence on the capacitance. Further studies are required, however, to clarify the physical mechanisms underlying the electrical data presented.



Hide All
1 Dennard, R.H., Gaensslen, F.H., Yu, H.-N., Rideout, V.L., Bassous, E. and LeBlanc, A.R., “Design of Ion-Implanted MOSFET's With Very Small Physical Dimensions,” IEEE J. Solid-State Circuits, SC–9, 256268 (1974)10.1109/JSSC.1974.1050511
2 Dennard, R.H., “Scaling Challenges for DRAM and Microprocessors in The 21st Century,” ULSI Science and Technology/1997, (edited by Massoud, H.Z., Iwai, H., Claeys, C. and Fair, R.B.), 519–532 (1997), The Electrochemical Society, Inc., Pennington, N.J.
3 Moore, G.E., “Cramming More Components Onto Integrated Circuits,” Electronics, 38, No. 8., 114117 (1965)
4 Moore, G.E., “Progress in Digital Integrated Electronics,” IEDM, 11–13 (1975)
5 Moore, G.E., “Lithography and The Future of Moore's Law,” SPIE 2438, 217 (1995)
6 Lo, S.-H., Buchanan, D.A., Taur, Y. and Wang, W., “Quantum-Mechanical Modeling of Electron Tunneling Current From The Inversion Layer of Ultra-Thin-Oxide nMOSFET's,” IEEE Electron Device Lett., 18, 209211 (1997)10.1109/55.568766
7 SIA 1997 Roadmap, Semiconductor Industry Association, 181 Metro Drive, Suite 450, San Jose, CA 95110
8 Frank, D.J., Taur, Y. and Wong, H-S. P, “Generalized Scale Length for Two-Dimensional Effects in MOSFET's,” IEEE Electron Device Letters, 19, 385387 (1998)10.1109/55.720194
9 Chatterjee, A, Chapman, R.A., Dixit, G., Kuehne, J., Hattangady, S., Yang, H., Brown, G.A., Aggarwal, R., Erdogan, U., He, Q., Hanratty, M., Rogers, D., Murtaza, S., Fang, S.J., Rotondaro, A.L.P., Hu, J.C., Terry, M., Lee, W., Fernando, C., Konecni, A., Wells, G., Frystak, D., Bowen, C., Rodder, M. and Chen, I.-C., “Sub-100nm Gate Length Metal Gate NMOS Transistors Fabricated by a Replacement Gate Process,” IEDM 821–824 (1997)
10 Chatterjee, A., Chapman, R.A., Joyner, K., Otobe, M., Hattangady, S., Bevan, M., Brown, G.A., Yang, H., He, Q., Rogers, D., Fang, S.J., Kraft, R., Rotondaro, A.L.P., Terry, M., Brenna, K., Aur, S.-W., Hu, J.C., Tsai, H-L, Jones, P., Wilk, G., Aoki, M., Rodder, M. and Chen, I.-C., “CMOS Metal Replacement Gate Transistors using Tantalum Pentoxide Gate Insulator,” IEDM 777–780 (1998)
11 Bersuker, G., Zeitzoff, P., Vishnubhotla, L., Huff, H.R., Brady, D., Gilmer, M., Jackson, M.D, Torres, K., Nguyen, B., Kim, S., Williamson, G., Guan, J. and Lysaght, P., Replacement Gate Process for High-K CMOS Transistors, ECS Ext. Abst., 99-1, Abst. No. 165 (1999)
12 Hubbard, K.J. and Schlom, D.G., “Thermodynamic Stability of Binary Oxides in Contact With Silicon,” J. Mater. Res., 11, 27572776 (1996)10.1557/JMR.1996.0350
13 Vogel, E. M. and Wortman, J. J., “Properties of N- and P-Channel MOSFETs with Ultrathin RTCVD Oxynitride Gate Dielectrics,” Fifth International Symposium on Silicon Nitride and Silicon Dioxide Thin Insulating Films (edited by Sundaram, K.B., Deen, M.J., Brown, W.D., Sah, R.E., Poindexter, E., Misra, D., Allendorf, M.D. and Raider, S.I.) (1999), ECS, (to be published), see also ECS Ext. Abst., 99-1, Abst No. 130 (1999)
14 Harrison, H.B., LI, H.-F., Dimitrijev, S. and Tanner, P., “Nitrogen in Ultra Thin Dielectrics, Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices” (edited by Garfunkel, E., Gusev, E. and Vul', A.,) NATO Science Series, 47, 191215 (1998)
15 Ma, T.P., “Making Silicon Nitride Film a Viable Gate Dielectric,” IEEE Trans. Electron Dev., 45, 680690 (1998)10.1109/16.661229
16 Ma, T.P., private communication, June 22, 1999
17 Yamamoto, K. and Nakazawa, M., “Studies of NH3 Thermal Nitridation of Ultrathin Si-Oxide Films on Si Using Photoemission Spectroscopy with Synchrotron Radiation,” Jpn. J. Appl.Phys., 33, 285289 (1994)10.1143/JJAP.33.285
18 Liu, C.T., Lloyd, E.J., Ma, Y., Du, M., Opila, R.L. and Hillenius, S., “High Performance 0.2 μtm CMOS with 25 Å Gate Oxide Grown on Nitrogen Implanted Si Substrates,” IEDM, 499–502 (1996)
19 Chen, Y.Y., Liu, I.M., Gardner, M., Fulford, J. and Kwong, D.L., “Performance and Reliability Assessment of Dual-Gate CMOS Devices with Gate Oxide Grown on Nitrogen Implanted Si Substrates,” IEDM, 639–642 (1997)
20 Lysaght, P.S., Nguyen, B., Bennett, J., Willliamson, G., Torres, K., Gilmer, M., Luo, T-Y, Brady, D., Guan, J., Brown, G.A., Zeitzoff, P., Bersuker, G., Geyling, F., Gebara, G., Vishnubhotla, L., Jackson, M.D. and Huff, H.R., “Experimental Observations of The Redistribution of Implanted Nitrogen at The Si-SiO2 Interface During RTA Processing, Silicon Front-End Processing—Physics and Technology of Dopant-Defect Interactions,” (edited by Gossmann, H-J, Haynes, T., Larsen, A.R. and Law, M.) (1999) MRS Proceedings, (to be published)10.1557/PROC-568-283
21 Lucovsky, G., “Spatially-Selective Incorporation of Bonded-Nitrogen Into Ultra-Thin Gate Dielectrics by Low-Temperature Plasma-Assisted Processing, Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices,” (edited by Garfunkel, E., Gusev, E. and Vul', A.,) NATO Science Series, 47, 147164 (1998)
22 Summerfelt, S.R., “(Ba,Sr)TiO3 Thin Films For DRAM's,” Thin Film Ferroelectric Materials and Devices (edited by Ramesh, R.) 1-42, Kluwer Academic Publishers (1997)
23 Mikami, N., “(Ba,Sr) TiO3 Films and Process Integration For DRAM Capacitor,” Thin Film Ferroelectric Materials and Devices (edited by Ramesh, R.) 43-70, Kluwer Academic Publishers (1997)
24 Crenshaw, D.L., Gupta, I.J., Lin, B.Y., Plumton, D., Bevan, M., Banerjee, A., Wise, R. and Horner, G.S., “Time Efficient Corona Discharge Methods for Making Capacitance Measurements for High-Density DRAM Materials,” Semiconductor Silicon/1998, (edited by Huff, H.R., Gosele, U. and Tsuya, H.), 1610–1620 (1998)
25 Gray, P.V., “The Silicon-Silicon Dioxide System, Proc.IEEE, 57, 15431551 (1969)10.1109/PROC.1969.7334
26 Hauser, J.R. and Ahmed, K., Characterization of Ultra-Thin Oxides Using Electrical C-V and I-V Measurements, Characterization and Metrology for ULSI Technology: 1998 International Conference (edited by Seiler, D., Diebold, A.C., Bullis, W.M., Shaffner, T.J., McDonald, R. and Walters, E.J.), 235–240 (1998)10.1063/1.56801
27 Lo, S-H, Buchanan, D. and Taur, Y., “Modeling and Characterization of Quantization, Polysilicon Depletion and Direct Tunneling Effects in MOSFET's with Ultrathin Oxides,”. IBM J. Res. and Develop., 43, 327337 (1999)10.1147/rd.433.0327
28 Szweda, R., “Annealing Effects in Silicon Nitride Encapsultant Films,” Physica B&C, 129B+C, 435439 (1985)
29 Seki, S., Unagami, T., Tsujiyama, B., “Electrical Characteristics of RF Magnetron-Sputtered Tantalum Pentoxide Silicon Interface,” J. Electrochemical Soc., 131, 26212625 (1984)10.1149/1.2115371
30 Ito, T., Ishikawa, H. and Nakamura, T., Thin Film Technology of VLSIs, Maruzen, Tokyo (1986), Chapter 4 (in Japanese)
31 Alers, G. B., Stirling, L.A., VanDover, R.B., Chang, J.P., Werder, D.J., Urdahl, R. and Rajopalan, R., “Effect of Thermal Stability and Roughness on Electrical Properties of Tantalum Oxide Gates,” Ultrathin SiO2 and High-K Materials for ULSi Gate Dielectrics (edited by Huff, H. R., Richter, C. A., Green, M. L., Lucovsky, G. and Hattori, T.), MRS Proceedings 567, 391396 (1999).
32 Saks, N. S., Ma, D.I. and Fowler, W.B., “Nitrogen Depletion During Oxidation in N2O,” Appl. Phys. Lett., 67, 374376 (1995)10.1063/1.114633
33 Garfunkel, E., private communication, May 6, 1999
34 Kooi, E., “The Invention of LOCOS,” IEEE Case Histories of Achievement in Science and Technology, 1, Institute of Electrical and Electronics Engineers, Inc.,(1991)
35 Matsuhashi, H. and Nishikawa, S., “Optimum Electrode Materials for Ta2O5 Capacitors for High- and Low-Temperature Processes,” Jpn. J. Appl. Phys. 33, 12931297 (1994)10.1143/JJAP.33.1293
36 Misra, V. and Lucovsky, G., “Alternative Gate Electrode Materials,” SRC/SEMATECH Research Center Presentation, Sept. 16-17,1998
37 Taur, Y. and Ning, T.H., Fundamentals of Modern VLSI Devices, Cambridge University Press (1998)
38 Alers, G.B., Werder, D.J., Chabal, Y., Lu, H.C., Gusev, E.P., Garfunkel, E., Gustafson, T. and Urdahl, R.S., “Intermixing at the Tantalum Oxide/Silicon Interface in Gate Dielectric Structures,” Appl.Phys. Lett., 73, 15171519 (1998)10.1063/1.122191

Process and Manufacturing Challenges for High-K Gate Stack Systems

  • M.C. Gilmer (a1), T-Y Luo (a1), H.R. Huff (a1), M.D. Jackson (a1), S. Kim (a1), G. Bersuker (a1), P. Zeitzoff (a1), L. Vishnubhotla (a1), G.A. Brown (a1), R. Amos (a1), D. Brady (a1), V.H.C. Watt (a1), G. Gale (a1), J. Guan (a1), B. Nguyen (a1), G. Williamson (a1), P. Lysaght (a1), K. Torres (a1), F. Geyling (a1), C.F.H. Gondran (a1), J. A. Fair (a2), M.T. Schulberg (a2) and T. Tamagawa (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed