Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T21:24:23.867Z Has data issue: false hasContentIssue false

Problems with The Concept of Thermal Budget: Experimental Demonstrations

Published online by Cambridge University Press:  10 February 2011

R. Ditchfield
Affiliation:
Department of Chemical Engineering, University of Illinois, Urbana, IL 61801
E. G. Seebauer
Affiliation:
Department of Chemical Engineering, University of Illinois, Urbana, IL 61801
Get access

Abstract

Up to now, kinetic effects in rapid thermal processing (RTP) have been assessed using the concept of thermal budget, with the idea that thermal budget minimization should minimize dopant diffusion and interface degradation. This work highlights shortcomings with that principle. Experiments comparing directly the rate of Si chemical vapor deposition with that of dopant diffusion show how thermal budget minimization can actually worsen diffusion problems rather than mitigate them. We present a straightforward framework for improving the results through comparison of activation energies of the desired and undesired phenomena. This framework explains the experimental results and provides strong kinetic arguments for continued development of rapid isothermal processing and small batch fast ramp methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fair, R. B., Rapid Thermal Processing Science and Technology, Academic Press, Inc., Boston, 1993, p. 2.Google Scholar
2. Masnari, N. A., J. Vac. Sci. Technol. B12, p. 2749 (1994).Google Scholar
3. Singh, R., J. Appl. Phys., 63, p. R59 (1988).Google Scholar
4. Fair, R. B. and Ruggles, G. A., Solid State Technology, 33, p. 107 (1990).Google Scholar
5. Ditchfield, R. and Seebauer, E. G., Mater. Res. Soc. Symp. Proc, 429, p. 133 (1996).Google Scholar
6. Ditchfield, R. and Seebauer, E. G., J. Electrochem. Soc, in press.Google Scholar
7. Mendicino, M. A. and Seebauer, E. G., J. Cryst. Growth, 134, p. 377 (1993) (and references therein).Google Scholar
8. Reid, K. G. and Sitaram, A. R., Mater. Res. Soc. Symp. Proc, 387, p. 201 (1995).Google Scholar
9. Schulz, M., Landolt-Börnstein Semiconductors: Impurities and Defects in Group IV Elements, Springer, Berlin, 1989, p. 230.a)Google Scholar
10. Ghezzo, M. and Brown, D. M., J. Electrochem. Soc, 120, p. 146 (1973).Google Scholar
11. Fukinaga, K. and Karasawa, T., J. Electrochem. Soc, 140, p. 2081 (1993).Google Scholar
12. Fukuda, H., Yasuda, M., and Iwabuchi, T., Jpn. J. Appl. Phys., 31, p. 3436 (1992).Google Scholar
13. Moon, J., Ito, I., and Hiraki, A., Thin Solid Films, 229, p. 93 (1993).Google Scholar