Skip to main content Accessibility help
×
Home

Probing the Phonon-Assisted Relaxation Processes in DNA-wrapped Carbon Nanotubes Using Photoluminescence Spectroscopy

  • S. G. Chou (a1), F. Plentz (a2), J. Jiang (a3), R. Saito (a3), D. Nezich (a4), H. B. Ribeiro (a2), A. Jorio (a2), M. A. Pimenta (a2), Ge. G. Samsonidze (a5), A. P. Santos (a6), M. Zheng (a7), G. B. Onoa (a7), E. D. Semke (a7), G. Dresselhaus (a8) and M. S. Dresselhaus (a4) (a5)...

Abstract

We present a detailed photoluminescence study of a (6, 5) enriched DNA-wrapped single wall carbon nanotube (DNA-CNT) solid sample and an as-produced DNA-CNT solution. Multiple strong PL peaks were observed at excitation energies that do not correspond to the interband electronic transitions that are strongly enhanced by electronic van Hove singularities. These strong PL peaks are assigned to different mechanisms of excitation and relaxation, including one phonon, two phonon, hot luminescence processes, as well as radiative and non-radiative energy transferring mechanisms between neighboring nanotubes. These processes are assigned to different channels of phonon-assisted electron relaxation. The study shows that the electronic relaxation processes observed in PL can be used as a means to probe different physical interactions between photons, electrons, and phonons that are not separately identified in bulk semiconducting materials.

Copyright

References

Hide All
[1] Heitz, R. et al. Phys. Rev. B. 64, 241305(R) (2001)
[2] Heitz, R. et al. Phys. Rev. B, 56, 10435 (1997)
[3] Benisty, H. et al., Phys. Rev. B. 51, 13281 (1995)
[4] Moehl, S. et al., J. Appl. Phys. 93, 6265 (2003)
[5] Zhao, H. et al., Phys. Rev. B. 66, 08533 (2002).
[6] Zhao, H. et al., Appl. Phys. Lett. 80, 1391 (2002)
[7] O'Connell, M. et al., Science. 297, 593 (2002).
[8] Bachilo, S. M. et al., Science. 298, 2361 (2002).
[9] Zheng, M. et al., Nature Materials. 2, 338 (2003).
[10] Zheng, M. et al., Science. 302, 1545 (2003).
[11] Strano, M. S., J. Am. Chem. Soc. 125, 16148 (2004).
[12] Strano, M. S., Nano Letters. 4, 543 (2004).
[13] Miyauchi, Y. et al., Chem. Phys. Lett. 387, 198 (2004).
[14] Lefebvre, J. et al., Appl. Phys. A. 78, 1107 (2004).
[15] Lefebvre, J. et al., Phys. Rev. B. 69, 075403 (2004).
[16] Bachilo, S. et al., J. Am. Chem. Soc., 125, 11186 (2003).
[17] Chou, S. et al., Chem. Phys. Lett. 397, 296 (2004).
[18] Jiang, J. et al., Phys. Rev. B. in press (2004).
[19] Wang, F. et al. (submitted, 2004)
[20] Resasco, D. et al., J. Nanopart. Res. 4, 131 (2002).
[21] Zheng, M. et al. J. Am. Chem. Soc. In press (2004).
[22] Chou, S. et al. (submitted, 2004)
[23] Thomsen, C. et al., Phys. Rev. Lett. 85, 5214 (2000).
[24] Martin, R. M. and Falicov, L. M., Light Scattering in Solids I: edited by Cardona, M. volume 8, pp 79145, Springer-Verlag, Berlin, 1983, Chapter 3, Topics in Applied Physics.
[25] Maultzsch, J. et al., Phys. Rev. Lett. 92, 075501 (2004).
[26] Stryer, L. and Haugland, R., Proc Natl Acad Sci USA 58, 719 (1967).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed