Skip to main content Accessibility help

Probing Semiconductor/Insulator Heterostructures Through Electron Spin Resonance of Point Defects: Interfaces, Interlayers, and Stress

  • A. Stesmans (a1), K. Clémer (a2), P. Somers (a3) and V. V. Afanas'ev (a4)


Electron spin resonance (ESR) spectroscopy has become indispensable when it comes to the characterization on atomic-scale of structural, and correlated, electrical properties of actual semiconductor/insulator heterostructures. Through probing of paramagnetic point defects such as the Pb-type defects, E', and EX as a function of VUV irradiation and post deposition heat treatment, basic information as to the nature, quality, and thermal stability of the interface and interfacial regions can be established. This is illustrated by some specific examples of ESR analysis on contemporary Si/insulator structures promising for future developments in integrated circuits. First the impact of strain on the Si/SiO2 entity will be discussed. Through ESR analysis of thermally oxidized (111)Si substrates mechanically stressed in situ during oxidation, and tensile strained (100)sSi/SiO2 structures, it will be pointed out that in-plane tensile stress in Si can significantly improve the interface quality. Next, ESR results for stacks of (100)Si/SiOx/HfO2 and (100)Si/LaAlO3 are presented, revealing the potential to attain a high quality Si/SiO2 interface for the former and an abrupt, thermally stable interface for the latter.



Hide All
[1] Helms, R. and Poindexter, E., Rep. Prog. Phys. 57, 791 (1994).
[2] Houssa, M., Pantisano, L., Ragnarsson, L.-Å., Degraeve, R., Schram, T., Pourtois, G., De Gendt, S., Groeseneken, G., and Heyns, M. M., Mat. Sci. and Eng. R 51, 37 (2006).
[3] Wilk, G. D., Wallace, R M., and Anthony, J. M., J. Appl. Phys. 89, 5243 (2001).
[4] Robertson, J., Eur. J. Appl. Phys. 28, 265 (2004).
[5] Brower, K.L., Phys. Rev. B 38, 9657 (1988).
[6] Stesmans, A., Phys. Rev. B 48, 2418 (1993).
[7] Stesmans, A. and Afanas.ev, V. V., J. Appl. Phys. 83, 2449 (1998).
[8] See, e.g., Griscom, D. L., in Glass: Science and Technology Vol.4B, edited by Uhlmann, D.R. and Kreidl, N. J. (Academic Press, N.Y., 1990), p. 151.
[9] Stesmans, A., Phys. Rev. B 45, 9502 (1992); A. Stesmans and F.Scheerlinck, Phys. Rev. B 50, 5204 (1994); J. Appl. Phys. 75, 1047 (1994).
[10] Gerardi, G. J., Poindexter, E. H., Caplan, P. J., and Johnson, N. M., Appl. Phys. Lett. 49, 348 (1986); A. Stesmans and V.V. Afanas'ev, Phys. Rev. B 57, 10030 (1998).
[11] International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, CA, 2005).
[12] Quevedo-Lopez, M. A., Voskay, M. R., Chambers, J. J., Bevan, M. J., Lifatou, A., Colombo, L., Kim, M. J., Gnade, B. E., and Wallace, R. M. J., Appl. Phys. 97, 043508 (2005).
[13] Hoyt, J. L., Nayfeh, H. M., Eguchi, S., Aberg, I., Xia, G., Drake, T., Fitzgerald, E. A., and Antoniadis, D. A., IEDM Tech. Dig. 2002, p. 23.
[14] Rim, K., Hoyt, J. L., and Gibbons, J., IEEE trans. electron devices. 47, 1406 (2000).
[15] Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T., and Lochtefeld, A., J. Appl. Phys. 97, 011101 (2005).
[16] Stesmans, A., Pierreux, D., Jaccodine, R. J., Lin, M.-T., and Delph, T. J., Appl. Phys. Lett. 82, 3038 (2003).
[17] Stesmans, A., Somers, P., Afanas.ev, V. V., Claeys, C., and Simoen, E., Appl. Phys. Lett. 89, 152103 (2006).
[18] Stesmans, A. and Afanas.ev, V. V., Appl. Phys. Lett. 82, 4074 (2003).
[19] Stesmans, A. and Afanas.ev, V. V., J. Appl. Phys. 97, 033510 (2004).
[20] Stesmans, A., Clémer, K., Afanas.ev, V. V., Edge, L. F., and Schlom, D. G., Appl. Phys. Lett. 89, 112121 (2006).
[21] Poindexter, E. H., Semicond. Sci. Technol. 4, 961 (1989).
[22] Brower, K. L., Phys. Rev. B 42, 3444 (1990).
[23] Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E., and Wance, R. O., Phys. Rev. Lett. 51, 2224 (1983).
[24] Griscom, D. L., J. Appl. Phys. 58, 2524 (1958), and references therein.
[25] Edwards, A. H., J. Non-Cryst. Solids 187, 232 (1995).
[26] Stesmans, A., Phys. Rev. B. 61, 8343 (2000).
[27] Pusel, A., Wetterauer, U., and Hess, P., Phys. Rev. Lett. 81, 645 (1998).
[28] Mihalyi, A., Jaccodine, R. J., and Delph, T. J., Appl. Phys. Lett. 74, 1981 (1999).
[29] Stesmans, A. and Afanas.ev, V.V., Phys. Rev. B 54, R11129 (1996).
[30] See, e.g., Fitch, J. T., Bjorkman, C. H., Lucovsky, G., Pollak, F. H., and Yin, X., J. Vac. Sci. Technol. B 7, 775 (1989).
[31] Cheng, Z., T.Currie, M., Leitz, C.W., Taraschi, G., Fitzgerald, E. A., Hoyt, J. L., and Antoniadas, D. A., IEEE Electron Device Lett. 22, 321 (2001).
[32] Drake, T. S., Chléirigh, C. N., Lee, M. L., Pitera, A.J., Fitzgerald, E. A., Antoniadis, D. A., Anjum, D. H., Hull, J. Li R., Klymko, N., and Hoyt, J. L., Appl. Phys. Lett. 83, 875 (2003).
[33] Sugii, N., J. Appl. Phys. 89, 6459 (2001).
[34] Cohen, G.M., Mooney, P.M., Paruchuri, V.K., and Hovel, H. J., Appl. Phys. Lett. 86, 251902 (2005).
[35] Delhougne, R., Meunier-Beillard, M., Caymax, M., Loo, R., and Vandervorst, W., Appl. Surf. Sci. 224, 91 (2004).
[36] Olsen, S.H., O'Neill, A.G., Norris, D.J., Cullis, A.G., Bull, S.J., Chattopadhyay, S., Kwa, K.S.K., Drisdoll, L.S., Waite, A.M., Tang, Y.T., and Evans, A.G.R., Mat. Sci. and Eng. B 109, 78 (2004).
[37] Welser, J., Hoyt, J. L., and Gibbons, J. F., Jpn. J. Appl. Phys. 33, 2419, (1994).
[38] See, e. g., Vandervorst, W., Brijs, B., Bender, H., Conrad, O. T., Petry, J., Richard, O., Van Elshocht, S., Delabie, A., Caymax, M., and De Gendt, S., Mat. Res. Soc. Symp. Proc. Vol.745, 23 (2003).
[39] Stesmans, A. and Afanas.ev, V. V., J. Phys.: Condens. Matter. 13, L673 (2001); Appl. Phys. Lett. 80, 1957 (2002).
[40] Cantin, J. L. and von Bardeleben, H. J., J. Non-Cryst. Solids 303, 175 (2002); S. Baldovino, S. Nokrin, G. Scarel, M. Fanciulli, T. Graf, and M. S. Brandt, J. Non-Cryst. Solids 322, 168 (2003); A. Y. Kang, P. M. Lenahan, J. F. Conley, Jr., and R. Solanski, Appl. Phys. Lett. 81, 1128 (2002); B. J. Jones, and R. C. Barklie, Microelectron. Eng. 80, 74 (2005).
[41] Park, B. E. and Ishiwara, H., Appl. Phys. Lett. 79, 806 (2001).
[42] Park, B. E. and Ishiwara, H., Appl. Phys. Lett. 82, 1197 (2003).
[43] Edge, L. F., Schlom, D. G., Brewer, R. T., Chabal, Y. J., Williams, J. R., Chambers, S. A., Hinkle, C., Lucovsky, G., Yang, Y., Stemmer, S., Copel, M., Holländer, B., and Schubert, J., Appl. Phys. Lett. 84, 4629 (2004).
[44] Lu, X. B., Zhang, X., Huang, R., Lu, H. B., Chen, Z. H., Xiang, W. F., He, M., Cheng, B. L., Zhou, H. W., Wang, X. P., Wang, C. Z., and Nguyen, B. Y., Appl. Phys. Lett. 84, 2620 (2004).
[45] Sivasubramani, P., Kim, M. J., Gnade, B. E., Wallace, R. M., Edge, L. F., Schlom, D. L., Craft, H. S., and Maria, J. P., Appl. Phys. Lett. 86, 201901 (2005).
[46] Lee, B. H., Kang, L., Nieh, R., Qi, W. J., and Lee, J. C., Appl. Phys. Lett. 76, 1926 (2000).
[47] Gutowski, M., Jaffe, J. E., Liu, C.-L., Stoker, M., Hedge, R. I., Rai, R. S., and Tobin, P. J., Appl. Phys. Lett. 80, 1897 (2002).
[48] Visokay, M. R., Chambers, J. J., Rotondaro, A. L., Shanware, A., and Colombo, L., Appl. Phys. Lett. 80, 3183 (2002).
[49] Meuris, M., Verhaverbeke, S., Mertens, P.W., Schmidt, H.F., Heyns, M. M., Kubota, M., Philipossian, A., Dillenbeck, K., Graf, D., Schnegg, A., and deBlank, R., Microelectron. Eng. 22, 21 (1993).
[50] Futako, W., Umeda, T., Nishizawa, M., Yasuda, T., Isoya, J., and Yamasaki, S., J. Non-Cryst. Solids 299–302, 575 (2002).
[51] Stesmans, A. and Afanas.ev, V. V., Appl. Phys. Lett. 77, 1469 (2000).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed