Skip to main content Accessibility help

Pressure-induced Structural Phase Transition of Carbon Nanotubes into New Nanostructured Carbon Solids

  • Masahiro Sakurai (a1) and Susumu Saito (a2)


We study pressure-induced structural phase transition of carbon nanotubes using the constant-pressure tight-binding molecular-dynamics simulation. The systems studied are nanotube bundles composed of (6,6) armchair nanotube and/or (7,4) chiral nanotube, which are reported to be the nanotubes relatively abundant in experimentally purified sample. We find that the nanotube bundles transforms into a new phase that consist of graphitic ribbons and diamond blocks, “graphitic nanoribbon solid”. It is also found that sp 3-rich phases obtained from the armchair nanotubes possess an anisotropic network and have high hardness which is comparable to that of cubic diamond. In the case of the bundles containing chiral nanotubes, on the other hand, amorphous diamond phase is obtained. Based on the local-density approximation in the density-functional theory, we also investigate the energetics and electronic structure of some of new carbon phases obtained in the molecular-dynamics study.



Hide All
1. Krätschmer, W., Lamb, L. D., Fostiropoulous, K., and Hoffman, D. R., Nature 347, 354 (1990).
2. Iijima, S., Nature 354, 56 (1991).
3. Iwasa, Y., Arima, T., Fleming, R. M., Siegrist, T., Zhou, O., Haddon, R. C., Rothberg, L. J., Lyons, K. B., Carter, H. L. Jr. , Hebard, A. F., Tycko, R., Dabbagh, G., Krajewski, J. J., Thomas, G. A., and Yagi, T., Science 264, 1570 (1994).
4. Núñez-Regueiro, M., Marques, L., Hodeau, J.-L., Bethoux, O., and Perroux, M.: Phys. Rev. Lett. 74, 278 (1995).
5. Hirai, H., Kondo, K., Yoshizawa, N., and Shiraishi, M., Appl. Phys. Lett. 64, 1797 (1994).
6. Hirai, H., Tabira, Y., Kondo, K., Oikawa, T., and ishizawa, N., Phys. Rev. B 52, 6162 (1995).
7. Sato, Y., Yanagi, K., Miyata, Y., Suenaga, K., Kataura, H., and Iijima, S., Nano. Lett. 8, 3151 (2008).
8. Parrinello, M. and Rahman, A., Phys. Rev. Lett. 45, 1196 (1980); J. Appl. Phys. 52, 7182 (1981).
9. Omata, Y., Yamagami, Y., Tadano, K., Miyake, T., and Saito, S., Physica E 29, 454 (2005).
10. Sakurai, M. and Saito, S., Jpn. J. Appl. Phys. (in press).
11. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).
12. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).
13.P. Giannozzi et al.,
14. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).
15. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).
16. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).
17. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).
18. Umemoto, K., Saito, S., Barbar, S., Tomanek, D., Phys. Rev.B 64, 193409 (2001).


Pressure-induced Structural Phase Transition of Carbon Nanotubes into New Nanostructured Carbon Solids

  • Masahiro Sakurai (a1) and Susumu Saito (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed