Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T13:09:31.688Z Has data issue: false hasContentIssue false

Pressure Dependence of Optical Transitions in In-rich Group III-Nitride Alloys

Published online by Cambridge University Press:  01 February 2011

S. X. Li
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory Department of Materials Science and Engineering, University of California, Berkeley, California 94720
J. Wu
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory Department of Materials Science and Engineering, University of California, Berkeley, California 94720
W. Walukiewicz
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory
W. Shan
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory
E. E. Haller
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory Department of Materials Science and Engineering, University of California, Berkeley, California 94720
Hai Lu
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853
William J. Schaff
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

The hydrostatic pressure dependence of the optical transitions in InN, In-rich In1-xGaxN (0 < x < 0.5) and In1-xAlxN (x = 0.25) alloys is studied using diamond anvil cells. The absorption edges and the photoluminescence peaks shift to higher energy with pressure. The pressure coefficient of InN is determined to be 3.0±0.1 meV/kbar. Together with previous experimental results, our data suggest that the pressure coefficients of group-III nitride alloys have only a weak dependence on the alloy composition. Photoluminescence gives much smaller pressure coefficients, which is attributed to emission involving highly localized states. This indicates that photoluminescence might not be an accurate method to study the pressure dependence of the fundamental bandgaps of group III-nitrides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Inushima, T., Mamutin, V. V., Vekshin, V. A., Ivanov, S. V., Sakon, T., Motokawa, M., and Ohoya, S.; J. Crystal Growth 227–228, 481 (2001).Google Scholar
[2] Davydov, V. Yu., Klochikhin, A. A., Seisyan, R. P., Emtsev, V. V., Ivanov, S. V., Bechstedt, F., Furthmüller, J., Harima, H., Murdryi, A. V., Aderhold, J., Semchinova, O., and Graul, J.; phys. stat. sol. B 229, R1 (2002).Google Scholar
[3] Wu, J., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Lu, Hai, Schaff, William J., Saito, Yoshiki, and Nanishi, Yasushi; Appl. Phys. Lett. 80, 3967 (2002).Google Scholar
[4] Matsuoka, Takashi, Okamoto, Hiroshi, Nakao, Masashi, Harima, Hiroshi, and Kurimoto, Eiji; Appl. Phys. Lett. 81, 1246 (2002).Google Scholar
[5] Wei, Su-Huai, Nie, Xiliang, Batyrev, Iskander G., and Zhang, S. B.; Phys. Rev. B 67, 165209 (2003).Google Scholar
[6] Kim, Sangsig, Herman, Irving P., Tuchman, J. A., Doverspike, K., Rowland, L. B., and Gaskill, D. K.; Appl. Phys. Lett. 67, 380 (1995).Google Scholar
[7] Shan, W., Walukiewicz, W., Haller, E. E., Little, B. D., Song, J. J., McCluskey, M. D., Johnson, N. M., Feng, Z. C., Schurman, M., and Stall, R. A.; J. Appl. Phys. 84, 4452 (1998).Google Scholar
[8] Perlin, Piotr, Mattos, Laila, Shapiro, Noad A., Kruger, Joachim, Wong, William S., Sands, Tim, Cheung, Nathan W., and Weber, Eicke R.; J. Appl. Phys. 85, 2385 (1999).Google Scholar
[9] Suski, T., Teisseyre, H., Łepkowski, S. P., Perlin, P., Mariette, H., Kitamura, T., Ishida, Y., Okumura, H., and Cichibu, S. F.; phys. stat. sol. (b) 235, 225 (2003).Google Scholar
[10] Akamaru, Hisamitsu, Onodera, Akifumi, Endo, Tadashi, Mishima, Osamu; J. Phys. Chem. Solids 63, 887 (2002).Google Scholar
[11] Lu, H., Schaff, W. J., Hwang, J, Wu, H., Koley, G., and Eastman, L. F., Appl. Phys. Lett. 79, 1489 (2001).Google Scholar
[12] Blakemore, J. S., J. Appl. Phys. 53, R123 (1982).Google Scholar
[13] Ng, Y. F., Cao, Y. G., Xie, M. H., Wang, X. L., and Tong, S. Y.; Appl. Phys. Lett. 81, 3960 (2002).Google Scholar
[14] Cimalla, V., Förster, Ch., Kittler, G., Popa, I., Kosiba, R., Ecke, G., Ambacher, O., Goldhahn, R., Shokhovets, S., Georgakilas, A., Lu, H., and Schaff, W., phys. stat. sol (a) 195, 310 (2003)Google Scholar
[15] Hur, Tae-Bong, Lee, Ik Jae, Kim, Jin Woo, Hwang, Yoon-Hwae, and Kim, Hyung-Kook, Jpn. J. Appl. Phys. 41, 1932 (2002)Google Scholar
[16] Wei, Su-Huai and Zunger, Alex, Phys. Rev. B 60, 5404 (1999).Google Scholar
[17] Crhistensen, N. E. and Gorczyca, I., Phys. Rev. B 50, 4397 (1994).Google Scholar
[18] Martinez, G., Handbook on Semiconductors Vol. 2, 4c, edited by Moss, T. S., North-Holland Publishing Co. (1980).Google Scholar
[19] Phillips, J. C., Bonds and Bands in Semiconductors, Academic Press, New York (1973).Google Scholar
[20] Adachi, Sadao, J. Appl. Phys. 58, R1 (1985).Google Scholar
[21] Nolte, D. D., Walukiewicz, W., and Haller, E.E.; Phys. Rev. Lett. 59, 501 (1987)Google Scholar
[22] Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Miotkowski, I., Ramdas, A. K., and Miotkowska, S.; Appl. Phys. Lett. 80, 34 (2002).Google Scholar