Skip to main content Accessibility help
×
Home

Preparation of Shape and Size-Controlled Zinc Oxide Nanostructures by Chemical Spray Pyrolysis Technique

  • Tatjana Dedova (a1), Malle Krunks (a2), Arvo Mere (a3), Jelena Klauson (a4) and Olga Volobujeva (a5)...

Abstract

Highly structured layers comprising of vertically aligned zinc oxide rods, tripods or platelets were fabricated by spray pyrolysis method at temperatures of 510-550 °C. The zinc chloride solution was pulverized onto the preheated substrates of glass and ITO, SnO2, ZnO covered glass substrates with the help of compressed air as a carrier gas. ZnO layers were characterized by scanning electron microscopy and Raman spectroscopy. C-axis orientated ZnO nanorod arrays of well-developed hexagonal rods with length from some hundreds of nanometers up to some microns and with diameter from 70 nm up to 900 nm . The rise of both the growth temperature and solution concentration increases rod dimensions. Deposition of the solutions with the concentration of 0.05 up to 0.2 mol/l results in structured layers composed of rods on glass substrates. Using ITO, SnO2 and ZnO thin film covered glasses diluted solutions should be used to obtain ZnO nanorods. Alcoholic solutions allow deposit thinner rods and reduce the deposition temperature. Very strong and relatively narrow E2 Raman bands indicate that ZnO rods prepared by spray pyrolysis technique are of high crystal quality.

Copyright

References

Hide All
[1]. Heo, Y.W., Norton, D.P., Tien, L.C., Kwon, Y., Kang, B.S., Ren, F., Pearton, S.J. and LaRoche, J.R., Mater. Sci. Eng., R47,1 (2004).
[2]. Yi, G.-C., Wang, C. and Park, W.I., Semicond. Sci. Technol., 20, S22 (2005).
[3]. nenkamp, R. Ko, Boedecker, K., Lux-Steiner, M.C., Poschenrieder, M., Zenia, F., Levy-Clement, C. and Wagner, S., Appl. Phys Lett. 77, 2575 (2000).
[4]. Beermann, N., Vayssieres, L., Lindquist, S.E. and Hagfeldt, A., J. Electrochem. Soc. 147, 2456 (2000).
[5]. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P., Science, 292, 1897 (2001).
[6]. Wu, J.-J. and Liu, S.-C., J. Phys. Chem. B, 106, 9546 (2002).
[7]. Park, J.Y., Jung, I.O., Moon, J.H., Lee, B.-T. and Kim, S.S., J. Cryst. Growth, 282, 353 (2005).
[8]. Guo, M., Diao, P., Wang, X. and Cai, S., J. Solid State Chem., 178, 3210 (2005).
[9]. Zhao, J., Jin, Z.-G., Li, T. and Liu, X.-X., J. Europ. Ceramic Soc., 26, 2769 (2006).
[10]. Krunks, M., Dedova, T. and Acik, I. Oja, Thin Solid Films, 515, 1157 (2006).
[11]. Patil, P.S., Mat. Chem. Phys., 59, 185 (1999).
[12]. Krunks, M. and Mellikov, E., Thin Solid Films, 270, 33 (1995).
[13]. Yan, H., He, R., Pham, J. and Yang, P., Adv. Mater., 15, 402 (2003).
[14]. Li, Q., Kumar, V., Li, Y., Zhang, H. and Chang, R.P.H., Chem. Mater. 17, 1001 (2005).
[15]. Alim, K.A., Fonoberov, V.A., Shamsa, M. and Baladin, A., J. Appl. Phys. 97, 124313 (2005).
[16]. Gupta, V., Bhattacharya, P., Yusuk, Y.I., Sreenivas, K. and Katiyar, R.S., J. Cryst. Growth 287, 39 (2006).
[17]. Zhang, D.-F., Sun, L.-D. and Yan, C.H., Chem. Phys. Letters 422, 46 (2006).
[18]. Zhao, A., Luo, T., Chen, L., Liu, Y., Li, X., Tang, Q., Cai, P. and Qian, Y., Mat. Chem. Phys., 99, 50 (2006).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed