Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-02T15:35:27.386Z Has data issue: false hasContentIssue false

Preparation of Nanocrystalline Silicon Quantum Dots by Pulsed Plasma Processes with High Deposition Rates

Published online by Cambridge University Press:  10 February 2011

K. Nishiguchi
Affiliation:
Research Center for Quantum Effect Electronics, Tokyo Institute of Technology, Tokyo 152-8552, JAPAN
S. Hara
Affiliation:
Research Center for Quantum Effect Electronics, Tokyo Institute of Technology, Tokyo 152-8552, JAPAN
T. Amano
Affiliation:
Research Center for Quantum Effect Electronics, Tokyo Institute of Technology, Tokyo 152-8552, JAPAN
S. Hatatani
Affiliation:
Research Center for Quantum Effect Electronics, Tokyo Institute of Technology, Tokyo 152-8552, JAPAN
S. Oda
Affiliation:
Research Center for Quantum Effect Electronics, Tokyo Institute of Technology, Tokyo 152-8552, JAPAN
Get access

Abstract

A new method for the fabrication of nanocrystalline silicon (nc-Si) in SiH4 plasma with very-highfrequency (VHF; 144MHz) excitation is proposed to increase the deposition rate, to control the size, and to minimize size dispersion of nc-Si. Nanocrystalline silicon is formed in the gas phase of the SiH4 plasma cell by coalescence of radicals. Supplying Ar enhances the nucleation of nc-Si because of high efficiency of SiH4 excitation into SiH2 radicals resulting in the nucleation. The deposition rate is thus increased by a factor of 100 to 1012/cm2.h. At the low flow rate of SiH4, smaller nc-Si with small dispersion is obtained. Moreover, when pulsed-SiH4 is supplied into Ar plasma, the growth of nuclei is limited by the time when SiH4 flows. The size of nc-Si and its dispersion are adjusted by the duration of SiH4 gas pulse.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Likharev, K.K., IBM J. Res. & Dev. 32, 144 (1988).10.1147/rd.321.0144Google Scholar
2. Kastner, M. A., Rev. Modem Physics 64, 849 (1992).10.1103/RevModPhys.64.849Google Scholar
3. Visscher, E. H., Lindeman, J., Verbrugh, S. M., Hadley, P., Mooij, J. E. and Vleuten, W. van der, Appl. Phys. Lett. 68, 2014 (1996).10.1063/1.115622Google Scholar
4. Matsumoto, K., M. Ishii and Segawa, K., J. Vac. Sci. Technol. B 14, 1331 (1996).10.1116/1.589091Google Scholar
5. Yano, K., Ishii, T., Hashimono, T., Kobayashi, T., Murai, E and Seki, K, IEEE Trans. Electron Devices 41,1628 (1994).10.1109/16.310117Google Scholar
6. Takahashi, Y, Namatsu, H., Kurihara, K., Iwadate, K, Nagase, M. and Murase, K., IEEE Trans. Electron Devices 43,1213 (1996).10.1109/16.506771Google Scholar
7. Otobe, M. and Oda, S., in Amorphous Silicon Technology-1995, edited by Hack, M., Schiff, E. A., Madan, A., Powel, M. and Matsuda, A. (Mater. Res. Soc. Proc. 377, San Francisco, CA, 1995) pp. 5156.Google Scholar
8. Otobe, M., Kanai, T, Ifuku, T, Yajima, H. and Oda, S., J. Non-Crystalline Solids 198–200, 875 (1996).10.1016/0022-3093(96)00161-5Google Scholar
9. Itoh, A., Ifuku, T, Otobe, M. and Oda, S., in Advances in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R. W., Fauchet, P. M., Shimizu, I., Viel, J. C., Shimada, T, and Alivisatos, A. P, (Mater. Res. Soc. Proc. 452, Boston, MA, 1996) pp. 749754.Google Scholar
10. Shiratani, M., Matsuo, S. and Watanabe, Y, Jpn. J. Appl. Phys. 30,1887 (1991).10.1143/JJAP.30.1887Google Scholar
11. Watanabe, Y and Shiratani, M., Plasma Source Sci. Technol. 3,286 (1994).10.1088/0963-0252/3/3/008Google Scholar
12. Kono, A., Koike, N., Okuda, K. and Goto, T., Jpn. J. Appl. Phys. 32, L543 (1993).10.1143/JJAP.32.L543Google Scholar
13. Volmer, M. and Weber, A., Z. Phys. Chem. 119, 277 (1926).Google Scholar