Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-22T18:00:01.609Z Has data issue: false hasContentIssue false

Preparation of a Silicon Oximide Gel via a Non-Aqueous Sol-Gel Route

Published online by Cambridge University Press:  01 February 2011

Fei Cheng
Affiliation:
Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK Frédéric Lefebvre Laboratoire de Chimie, Organométallique de Surface, 44 bd du 11 November 1918, 69616 Villeurbanne Cedex, France
John S. Bradley
Affiliation:
Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK Frédéric Lefebvre Laboratoire de Chimie, Organométallique de Surface, 44 bd du 11 November 1918, 69616 Villeurbanne Cedex, France
Get access

Abstract

A silicon oximide gel was prepared by a reaction in N,N-dimethylformamide between tris(dimethylamino)silylamine (Me2N)3SiNH2 (TDSA) and formamide in a 1:2 molar ratio at 50C. The 29Si, 13C CP-MAS NMR and IR analyses indicated that the gel mainly comprised oximino silicon networks [SiOC(H)=NSi]x. The gel exhibited a microporous structure and had a total surface area of 339 m2/g. A microporous structure with a BET surface area of 195 m2/g was also obtained after pyrolysis of the gel at 1000°C for 2 h. Pyrolysis of the gel under N2 up to 1485°C gave an amorphous silicon oxycarbonitride glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brinker, C. J. and Schere, G. W. Sol-Gel Science, Academic Press, London, 1990.Google Scholar
2. Rovai, R. Lehmann, C. W. and Bradley, J. S. Angew. Chem. Int. Ed., 38, 2036 (1999)Google Scholar
3. Mazdiyasni, K. S. Cooke, C. M. J. Am. Ceram. Soc., 56, 628 (1973)Google Scholar
4. Tredway, W. K. Risbud, S. H. Engineering Ceramics (Multianion glasses), Hampshire, S. ed.; Elsevier Applied Science Publishing, UK, 1986, pp203 Google Scholar
5. Loehman, R.E. Treatise Mater. Sci. Technol., 26, 119 (1985).Google Scholar
6. Pauthe, M. Phalippou, J. Belot, V. Corriu, R. Lechercq, D. and Vioux, A. J. Non-Cryst. Solids, 125, 187 (1990).Google Scholar
7. Haskouri, J. E. Cabrera, S. Sapina, F. Latorre, J. Guillem, C. Porte, A. B.-, Porte, D. B.-, Marcos, M. D. and P, Amoros, Adv. Mater., 13, 192 (2001).Google Scholar
8. Ziegler, G. Kleebe, H.-J, Motz, G. Muller, H., Trabl, S. Weibelzahl, W. Mater. Chem. Phys., 61, 55 (1999)Google Scholar
9. Bois, L. Maquet, J. Babonneau, F. and Bahloul, D. Chem.Mater., 7, 975 (1995).Google Scholar
10. E-Yu, G., Parrick, J. Edirisinghe, M. Finch, D. Ralph, B. J. Mater. Sci., 29, 5569 (1994)Google Scholar
11. Verhoek, F. H. J. Chem. Soc., 2577 (1936).Google Scholar
12. Burfield, D.R. and Smithers, R.H. J. Org. Chem., 43, 3966 (1978).Google Scholar
13. Weeren, V. Leone, E. A. Curran, S. Klein, L. C. and Danforth, S. C. J. Am. Ceram. Soc., 77, 2699 (1994).Google Scholar
14. Seyferth, D. Strohmann, C. Dando, N. R. Perrotta, A. J. and Gardner, J. P. Mat. Res. Soc. Symp. Proc. 327, 191 (1994).Google Scholar
15. Johnson, L. F. and Jankowski, W. C. Carbon-13 NMR Spectrua, (John Wiley & Sons, Inc., New York), 1972.Google Scholar
16. Sutherland, O. Comprehensive Organic Chemistry: The Synthesis and Reactions of Organic Compounds; Volume 2: Nitrogen Compounds, Carboxylic Acids and Phosphorus Compounds, (Pergamon Press, Oxiford, 1979), pp.9861011.Google Scholar
17. Nakamoto, K. Infrared and Roman Spectra of Inorganic and Coordination Compounds, Part B: Application in Coordination, Organometallic, and Bioinorganic Chemistry, (John Wiley & Sons, Inc., New York), 1997.Google Scholar
18. Lipowitz, J. and Freeman, H. A. Adv. Ceram. Mater., 2, 121 (1987).Google Scholar