Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T10:43:58.547Z Has data issue: false hasContentIssue false

Preparation and Optical Properties of Au-shell Submicron Polystyrene Particles

Published online by Cambridge University Press:  17 March 2011

Tianhao Ji
Affiliation:
Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel Department of Organic Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Yair Avny
Affiliation:
Department of Organic Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Dan Davidov
Affiliation:
Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Get access

Extract

Recently, there has been an immense interest in the fabrication of composite nanoparticles, such as core-shell structural materials [1-6]. These core-shell composite particles may show special properties different from those of the core or shell particles. Thus, Au or Ag nanoparticcles were coated by silica. The silica shell not only stabilizes the colloidal Au nanoparticles, but also influences their optical property [3,6]. Furthermore, Halas et al. [5] have demonstrated that by varying the ratio of gold-shell to silica-core, the plasmon optical resonance of the Au shell and silica core strongly shifts across the visible spectrum and into the infrared region. Core-shell particles can be used as building blocks for different devices including tunable Photonic-Band-Gap (PBG) structures. Herein, we report on the fabrication of such particles with emphasis on the preparation of the Au nano-shells coated polystyrene (PS) with a diameter of about 700 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hines, M. A. and Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).Google Scholar
2. Bamnolker, H., Nitzan, B., Gura, S., Margel, S., J. Mater. Sci. Lett. 16, 1412 (1997).Google Scholar
3. a) Correa-Duarte, M. A., Giersig, M., Liz-Marzan, L. M., Chem. Phys. Lett. 286, 497 (1998). b) I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, L. M. Liz-Marzan, Langmuir 16, 2731 (2000).Google Scholar
4. a) Caruso, F., Lichtenfeld, H., Mohwald, H., Giersig, M., J. Am. Chem. Soc. 120, 8523 (1998). b) F. Caruso, R. Caruso, H. Mohwald, Science 282, 1111 (1998).Google Scholar
5. Oldenburg, S. J., Averitt, R. D., Westcott, S. L., Halas, N. J., Chem. Phys. Lett. 288, 243 (1998).Google Scholar
6. a) Liz-Marzan, L. M., Giersig, M., Mulvaney, P., Chem. Commun. 732 (1996). b) L. M. Liz-Marzan, M. Giersig, P. Mulvaney, Langmuir 12, 4329 (1996). c) T. Ung, L. M. Liz-Marzan, P. Mulvaney, Langmuir 14, 3740 (1998).Google Scholar
7. Dokoutchaev, A., James, J. T., Koene, S. C., Pathak, S., Prakash, G. K. S., Thompson, M. E., Chem. Mater. 11, 2389 (1999).Google Scholar
8. Oldenburg, S. J., Jackson, J. B., Westcott, S. L., Halas, N. J., Appl. Phys. Lett. 75, 2897 (1999).Google Scholar
9. Grabar, K. C., Allison, K. J., Baker, B. E., Bright, R. M., Brown, K. R., Freeman, R. G., Fox, A. P., Keating, C. D., Musick, M. D., Natan, M. J., Langmuir 12, 2353 (1996).Google Scholar
10. Brown, K. R., Walter, D. G., Natan, M. J., Chem. Mater. 12, 306 (2000).Google Scholar
11. Westcott, S. L., Oldenburg, S. J., Lee, T. R., Halas, N. J., Langmuir 14, 5396 (1998).Google Scholar
12. Hulst, H. C. Van de, in Light Scattering By Small Particles, John Wiley & Sons, Inc., New York 1957, p. 90.Google Scholar
13. Mie, G., Ann. Physik 25, 377 (1908).Google Scholar