Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:25:31.741Z Has data issue: false hasContentIssue false

Preparation and Mechanical Characterization of Composite Material of Polymer–Matrix with Starch Reinforced with Coconut Fibers

Published online by Cambridge University Press:  01 February 2011

Yaret G. Torres-Hernández-
Affiliation:
Departamento de Materiales, Universidad Autónoma Metropolitana Av. San Pablo No. 180, Col. Reynosa-Tamaulipas, México, D. F., 02200.
Alejandro Altamirano-Torres
Affiliation:
Departamento de Materiales, Universidad Autónoma Metropolitana Av. San Pablo No. 180, Col. Reynosa-Tamaulipas, México, D. F., 02200.
Francisco Sandoval-Pérez
Affiliation:
Departamento de Materiales, Universidad Autónoma Metropolitana Av. San Pablo No. 180, Col. Reynosa-Tamaulipas, México, D. F., 02200.
Enrique Rocha Rangel
Affiliation:
Universidad Politécnica de Victoria, Avenida Nuevas Tecnologías 5902, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas, 87137, México
Get access

Abstract

In this work the synthesis and mechanical characterization of a polymer matrix composite is reported. An epoxy resin is used as matrix with addition of starch and coconut fibers as reinforcement. Vickers hardness and impact tests are used for mechanical characterization. Starch is used to promote degradability of the polymer matrix with clear benefits for the environment. Natural fibers have been used for reinforcing the composite materials. Natural fibers have several advantages such as price, low density and relatively high mechanical properties, they are also biodegradable and non abrasive In this investigation, the composite material samples are fabricated with epoxy resin, 5, 10, 15 wt % of starch and 5, 10 wt % of coconut fibers with the help of silicon molds which have the dimensions and geometry according to ASTM Standards for make Impact and Vickers hardness tests. The obtained results show that increases in the amount of coconut fibers cause an enhancement of the mechanical properties of the material, due to a good adhesion between the polymeric matrix and the natural fibers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kolybaba, M., Tabil, L.G., “Biodegradable Polymers: Past, Present, and Future”, ASAE Paper No. RRV03–0007Google Scholar
2. José L., M., Herbert, K., Gil, A., Gañán, P., “Evaluación de la degradación ambiental de materiales termoplásticos empleados en labores agrícolas en el cultivo de banano en Colombia”, Polímeros ciencia e Tecnología, Vol. 17, No. 003, p. 201205, (2007).Google Scholar
3. Tomás J., M. S., Moreno F., A. V. M. y V., “Potencial de las Fibras Naturales para su uso Industrial”, Ciencia Ergo Sum, Toluca Estado de México, (2002).Google Scholar
4. Mutjé, P. and Llop, M. F, “Desarrollo de Materiales Plásticos Reforzados con Fibras Lignocelulósicas”, Iberoamerican Congress on Pulp and Paper Research, (2002).Google Scholar
5. Celina y, Á. V. B. Analía, V., “Comportamiento mecánico de compuestos de celulosa modificada/almidón con fibras de sisal cortas”, Jornadas SAM/CONAMET/SIMPOSIO MATERIA, (2003).Google Scholar
6. Jin, F.-L., Park, S.-J., “Impact strength improvement of epoxi resins reinforced with a biodegradable polymer”, Materials Science & Engineering, A 478, p. 402405, (2008).Google Scholar