Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-24T23:24:27.979Z Has data issue: false hasContentIssue false

Preparation and Characterization of Aluminum Lithium Hydroxide Carbonate Hydrate Obtained From Basic Aluminum Sulfate

Published online by Cambridge University Press:  31 January 2012

César A. C. Soto
Affiliation:
Universidad de Guanajuato, Departamento de Química, Noria alta s/n, Col. Noria alta, Guanajuato, Gto., C.P. 36050, México. E-mail: csarc376@gmail.com
Aurora P. Delgado
Affiliation:
Universidad de Guanajuato, Departamento de Química, Noria alta s/n, Col. Noria alta, Guanajuato, Gto., C.P. 36050, México. E-mail: csarc376@gmail.com
Esthela R. Ramírez
Affiliation:
Universidad de Guanajuato, Departamento de Química, Noria alta s/n, Col. Noria alta, Guanajuato, Gto., C.P. 36050, México. E-mail: csarc376@gmail.com
Veridiana R. Zamudio
Affiliation:
Universidad de Guanajuato, Departamento de Química, Noria alta s/n, Col. Noria alta, Guanajuato, Gto., C.P. 36050, México. E-mail: csarc376@gmail.com
Get access

Abstract

Aluminum lithium hydroxide carbonate hydrate, also known as Al-Li double hydroxide or Al-Li hydrotalcite-like compound [Al2Li(OH)6]2CO3•nH2O, was prepared from basic aluminum sulfate. This compound was prepared by precipitation in homogeneous solution of an aluminum bisulfite solution. A sodium aluminate aqueous solution was prepared by dissolving basic aluminum sulfate in 1M sodium hydroxide. The Al-Li double hydroxide was obtained after addition of lithium carbonate satured solution to the sodium aluminate solution, at 60 °C. The synthesized powder was characterized by thermal analysis (TG, DTG and DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By this method crystalline Li-Al hydrotalcite like compound with composition near to Al4Li2(OH)12CO3 •3H2O was obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ingram, L., Taylor, HFW., Mineral Mag. 36, 465479 (1967).Google Scholar
2. Besserguenev, A.V., Fogg, A. M., Francis, R. J., Price, S. J., O’Hare, D., Isupov, V. P. and Tolochko, B. P., Chem Mater 9, 241 (1997).Google Scholar
3. Climent, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., Concepcion, P., Journal of Catalysis 269 (1), 140-149 (2010).Google Scholar
4. Miyata, S., Taketomi, M., Kojima, T., Tanizaki, S., Hashimoto, A., Kamishiro, K., Eguchi, M., Suzuki, S., Jpn. Patent No. 2000233188 (29 August 2000).Google Scholar
5. Del Arco, M., Cebadera, E., Gutierrez, S., Martin, C., Montero, MJ., Rives, V., Rocha, J., Sevilla, MA., J Pharm Sci 93, 16491658 (2004).Google Scholar
6. Duan, X. et al. ., “Layered Double Hydroxides”, ed. Duan, X. and Evans, D. G. (Springer-Verlag Berlin Heidelberg, 2006) pp. 90109.Google Scholar
7. Nyquist, R. A. and Kagel, R. O., “Infrared Spectra of Inorganic Compounds”, (Academic Press, 1971) pp. 1-5.Google Scholar
8. Nakamoto, K., “Infrared and Raman Spectra of Inorganic and Coordination compounds”, (John Wiley & Sons, 1963) pp. 103-110.Google Scholar
9. Frost, R. L., Weier, M. L., and Kloprogge, J. T., Journal of Raman Spectroscopy 34 (10), 760-768 (2003).Google Scholar
10. Kloprogge, J. T., Wharton, D., Hickey, L. and Frost, R. L., American Mineralogist 87 (5–6), 623-629 (2002).Google Scholar
11. Serna, C. J., Rendon, J. L. and Iglesias, J. E., Clays and Clay Minerals 30 (3), 180-184 (1982).Google Scholar
12. Drewien, C. A., Tallant, D. R., Eatough, M. O., Journal of Materials Science 31 (16), 4321-4325 (1996).Google Scholar
13. Miyata, S., Clays and Clay Minerals 28, 5056 (1980).Google Scholar