Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-22T13:10:30.158Z Has data issue: false hasContentIssue false

Preparation and Characterization of 3C-SiC Heteroepitaxial Layers on Si(111)

Published online by Cambridge University Press:  25 February 2011

Mitsugu Yamanaka
Affiliation:
Scientific Research Laboratory, Nissan Motor Co., Ltd., 1, Natsushima-cho, Yokosuka 237, Japan
Keiko Ikoma
Affiliation:
Scientific Research Laboratory, Nissan Motor Co., Ltd., 1, Natsushima-cho, Yokosuka 237, Japan
Get access

Abstract

3C-SiC layers were grown on Si(111) substrates by chemical vapor deposition (CVD) using SiH4-CH3CI-H2 gas mixture. 3C-SiC(111) heteroepitaxial layers were obtained with smooth surfaces and reduced warpage. All the epilayers were n- type, and the carrier density and Hall mobility were 2.1×1016∼2.8×1017 cm-3 and 120∼180 cm2/Vs at room temperature, respectively. Temperature dependences of the electrical properties of the self-supported 3C-SiC(111) epilayers were measured between 15 and 300 K for the first time. 3C-SiC(111) epilayers showed a similar temperature dependence of carrier density to 3C-SiC(001) heteroepitaxial layer. Hall mobility was maximum (∼360 cm2/Vs) around 100 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishino, S., Powell, A. J., and Will, H. A., Appl. Phys. Lett. 42, 460 (1983).CrossRefGoogle Scholar
2. Yamanaka, M., Daimon, H., Sakuma, E., Misawa, S., and Yoshida, S., J. Appl. Phys. 61, 599(1987).CrossRefGoogle Scholar
3. Okumura, H., Shinohara, M., Kuroda, S., Endo, K., Sakuma, E., Misawa, S., and Yoshida, S., Jpn. J. Appl. Phys. 27, 1712 (1988).Google Scholar
4. Furukawa, K., Uemoto, A., Shigeta, M., Suzuki, A., and Nakajima, S., Appl. Phys. Lett. 48, 1536 (1986).Google Scholar
5. Kong, H. S., Palmour, J. W., Giass, J. T., and Davis, R. F., Appl. Phys. Lett. 51, 442 (1988).Google Scholar
6. Liaw, H. P. and Davis, R. F., J. Electrochem. Soc. 131, 3104 (1984).Google Scholar
7. Suzuki, A., Furukawa, K., Higashigaki, Y., Harada, S., Nakajima, S., and Lnoguchi, T., J. Cryst. Growth 70, 287 (1984).Google Scholar
8. Furumura, Y., Doki, M., Mieno, F., Eshita, T., Suzuki, T., and Maeda, M., J. Electrochem. Soc. 135, 1255 (1988).Google Scholar
9. Tachibana, T., Kong, H. S., Wang, Y. C., and Davis, R. F., J.Appl. Phys. 67, 6375 (1990).CrossRefGoogle Scholar
10. Furukawa, K., Uemoto, A., Fujii, Y., Shigeta, M., Suzuki, A., and Nakajima, S., ExtendedAbstract of 19th Conference on Solid State Devices and Materials 231 (1987).Google Scholar
11. Ikoma, K., Yamanaka, M., Yamaguchi, H., and Shichi, Y., J. Electrochem. Soc. 138, 3028 (1991).Google Scholar