Skip to main content Accessibility help
×
Home

Preliminary Investigation of a Sacrificial Process for Fabrication of Polymer Membranes with Sub-Micron Thickness

  • Luke A. Beardslee (a1), Dimitrius A. Khaladj (a1) and Magnus Bergkvist (a1)

Abstract

Here we present a single mask sacrificial molding process that allows ultrathin 2-dimensional membranes to be fabricated using biocompatible polymeric materials. For initial investigations, polycaprolactone (PCL) was chosen as a model material. The process is capable of creating 250-500 nm thin, through-hole PCL membranes with various geometries, pore-sizes and spatial features approaching 2.5 micrometers using contact photolithography. The technique uses a mold created from two layers of lift-off resist (LOR). The upper layer is patterned, while the lower layer acts as a sacrificial release layer for the polymer membrane. For mold fabrication, photoresist on top of the layers of lift-off resist is patterned using conventional photolithography. During development the mask pattern is transferred onto the first LOR layer and the photoresist is removed using acetone, leaving behind a thin mold. The mold is filled with a solution of the desired polymer. Subsequently, both the patterned and lower LOR layers are dissolved by immersion in an alkaline solution. The membrane can be mounted onto support structures pre-release to facilitate handling.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Preliminary Investigation of a Sacrificial Process for Fabrication of Polymer Membranes with Sub-Micron Thickness
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Preliminary Investigation of a Sacrificial Process for Fabrication of Polymer Membranes with Sub-Micron Thickness
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Preliminary Investigation of a Sacrificial Process for Fabrication of Polymer Membranes with Sub-Micron Thickness
      Available formats
      ×

Copyright

References

Hide All
1. Yurchenco, P. D., Cold Spring Harbor Perspectives in Biology, 3, a004911, (2012).
2. LeBleu, V. S., MacDonald, B. and Kalluri, R., Experimental Biology and Medicine, 232, 1121, (2007).
3. James, A. L., Maxwell, P. S., Pearce-Pinto, G., Elliot, J. G. and Carroll, N. G., American Journal of Respiratory and Critical Care Medicine, 166, 1590, (2002).
4. Osawa, T., Onodera, M., Feng, X. Y. and Nozaka, Y., Journal of Electron Microscopy, 52, 435, (2003).
5. Kumbar, S. G., James, R., Nukavarapu, S. P. and Laurencin, C. T., Biomedical Materials, 3, 034002, (2008).
6. Xiao, W., He, J., Nichol, J. W., Wang, L., Hutson, C. B., Wang, B., Du, Y., Fan, H. and Khademhosseini, A., Acta Biomaterialia, 7, 2384, (2011).
7. Schlichting, K. E., Copeland-Johnson, T. M., Goodman, M., Lipert, R. J., Prozorov, T., Liu, X., McKinley, T. O., Lin, Z., Martin, J. A. and Mallapragada, S. K., Acta Biomaterialia, 7, 3094, (2011).
8. Hayek, A., Xu, Y., Okada, T., Barlow, S., Zhu, X., Moon, J. H., Marder, S. R. and Yang, S., Journal of Materials Chemistry, 18, 3316, (2008).
9. Kweon, H., Yoo, M. K., Park, I. K., Kim, T. H., Lee, H. C., Lee, H.-S., Oh, J.-S., Akaike, T. and Cho, C.-S., Biomaterials, 24, 801, (2003).
10. Lin, C.-C., Raza, A. and Shih, H., Biomaterials, 32, 9685, (2011).
11. Neeley, W. L., Redenti, S., Klassen, H., Tao, S., Desai, T., Young, M. J. and Langer, R., Biomaterials, 29, 418, (2008).
12. Sodha, S., Wall, K., Redenti, S., Klassen, H., Young, M. J. and Tao, S. L., Journal of Biomaterials Science, Polymer Edition, 22, 443, (2011).
13. Vozzi, G., Flaim, C. J., Bianchi, F., Ahluwalia, A. and Bhatia, S., Materials Science and Engineering: C, 20, 43, (2002).
14. Nagstrup, J., Keller, S., Almdal, K. and Boisen, A., Microelectronic Engineering, 88, 2342, (2011).
15. Shayan, G., Felix, N., Cho, Y., Chatzichristidi, M., Shuler, M. L., Ober, C. K. and Lee, K. H., Tissue Engineering: Part C, 18, 667, (2012).
16. Moeller, H.-C., Mian, M. K., Shrivastava, S., Chung, B. G. and Khademhosseini, A., Biomaterials, 29, 752, (2008).
17. Claeyssens, F., Hasan, E. A., Gaidukeviciute, A., Achilleos, D. S., Ranella, A., Reinhardt, C., Ovsianikov, A., Shizhou, X., Fotakis, C., Vamvakaki, M., Chichkov, B. N. and Farsari, M., Langmuir, 25, 3219, (2009).
18. Linder, V., Gates, B. D., Ryan, D., Parviz, B. A. and Whitesides, G. M., Small, 1, 730, (2005).
19. Ainslie, K. M. and Desai, T. A., Lab on a Chip, 8, 1864, (2008).
20. Torrejon, K. Y., Pu, D., Bergkvist, M., Danias, J., Sharfstein, S. T. and Xie, Y., Biotechnology and Bioengineering, 110, 3205, (2013).

Keywords

Preliminary Investigation of a Sacrificial Process for Fabrication of Polymer Membranes with Sub-Micron Thickness

  • Luke A. Beardslee (a1), Dimitrius A. Khaladj (a1) and Magnus Bergkvist (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed