Skip to main content Accessibility help

Preferential Site Precipitation and Subcell Stability in AA6061 Sandwich Cores

  • B. A. Bouwhuis (a1) and G. D. Hibbard (a2)


Periodic cellular metal (PCM) sandwich cores can be considered hybrids of the solid and gas type. These can be designed at both the architectural and microstructural levels. PCM cores with 95% open porosity have been constructed from perforated 6061 aluminium alloy (AA6061) sheets using a perforation-stretching method. This method places planar, periodically-perforated sheet metal in an alternating-pin jig. The pins apply force out-of-plane, plastically deforming the sheet metal into a truss-like array of struts (i.e. metal supports) and nodal peaks (i.e. strut intersections). The result is a non-uniform work-hardened profile exhibiting large deformation at the nodes and small deformation at the struts.

For identical PCM architectures, this study looks at the interaction of microstructural strengthening mechanisms and the resultant performance of PCM truss cores. Beginning with fabrication, work-hardening induced a subcell network of dislocation tangles within the AA6061 matrix. Following this stage, a variety of microstructures were created through recovery, recrystallization and precipitation mechanisms. Microhardness measurements and electron back-scattered diffraction (EBSD) characterization were employed through truss core cross-sections in order to study the microstructural gradients of subcell size as well as interaction between subcells and precipitates in the truss cores. To determine the effect of microstructure on mechanical performance, PCM cores were compressed to study deformation and collapse mechanisms.

The present data can be used to illustrate engineering at the architectural and microstructural levels to achieve a range of mechanical properties in a hybrid sandwich core.



Hide All
1. Ashby, M. F., Philos. Mag. 85, 3235 (2005).
2. Wadley, H. N. G., Philos. Trans. R. Soc. A 364, 31 (2006).
3. Wadley, H. N. G., Fleck, N. A. and Evans, A. G., Compos. Sci. Technol. 63, 2331 (2003).
4. Benedyk, J. C., Light Metal Age 26, 10 (1968).
5. Bouwhuis, B. A. and Hibbard, G. D., in Materials in Extreme Environments, edited by Mailhiot, C., Saganti, P.B., and Ila, D., (Mater. Res. Soc. Symp. Proc. 929E, Warrendale, PA, 2006) paper no. 0929-II06–05.
6. Deshpande, V. S. and Fleck, N. A., Int. J. Solids Struct. 38, 6275 (2001).
7. Simone, A. E. and Gibson, L. J., Acta Mater. 46, 3109 (1998).
8. Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W. and Wadley, H. N. G., Metal Foams: A Design Guide (Butterworth-Heinemann, Boston, 2000) p. 372.
9. Kooistra, G. W., Deshpande, V. S. and Wadley, H. N. G., Acta Mater. 52, 4229 (2004).
10. Bouwhuis, B. A. and Hibbard, G. D., Metall. Mater. Trans. B, in press (2006).
11. Deshpande, V. S., Fleck, N. A. and Ashby, M. F., J. Mech. Phys. Solids 49, 1747 (2001).
12. Bouwhuis, B. A. and Hibbard, G. D., in Processing and Fabrication of Advanced Materials XV, edited by Srivatsan, T.S. and Varin, R.A. (ASM International, Materials Park, 2006), p. 87101.
13. Gourdet, S. and Montheillet, F., Mater. Sci. Eng. A283, 274 (2000).10.1016/S0921-5093(00)00733-4
14. Mishin, O. V., Jensen, D. Juul, and Hansen, N., Mater. Sci. Eng. A342, 320 (2003).
15. Bowen, J. R., Mishin, O. V., Prangnell, P. B., and Jensen, D. Juul, Scripta Mater. 47, 289 (2002).
16. Shankar, M. R., Chandrasekar, S., Compton, W. D., and King, A. H., Mater. Sci. Eng. A410–411, 364 (2005).
17. Cherukuri, B. and Srinivasan, R., Mater. Manuf. Processes. 21, 519 (2006).
18. Nock, J. A., Iron Age 159, 48 (1947).
19. Harrington, R. H., Trans. A. I. M. E. 124, 172 (1937).
20. Shteinberg, M. M., Smirnov, M. A., Kareva, N. T., Ananin, S. N., Goldbukht, G. E., and Tolstov, A. M., Metalloved. Term. Obrab. Met. 8, 26 (1973) [Met. Sci. Heat Treat. 15, 665 (1973)].
21. Ber, L. B., Vaynblat, Yu. M., Davydov, V. G., Khayurov, S. S., and Shcheglova, N. M., Fiz. Met. Metalloved. 36, 583 (1973) [Phys. Met. Metallogr. 36, 120 (1974)].
22. Mondolfo, L. F., Aluminum alloys: Structure and Properties (Butterworths, Toronto, 1976) p. 796.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed