Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T21:57:45.233Z Has data issue: false hasContentIssue false

A Predictive Model for Controlling Wafer Level Polish Rate Uniformity in Oxide CMP

Published online by Cambridge University Press:  01 February 2011

Tushar P. Merchant
Affiliation:
Technology Solutions, Freescale Semiconductor Inc., MD: EL722, Tempe, AZ-85284, U.S.A.
Leonard J. Borucki
Affiliation:
Technology Solutions, Freescale Semiconductor Inc., MD: EL722, Tempe, AZ-85284, U.S.A. Intelligent Planar, 3831 E. Ivy St., Mesa, AZ-85205, U.S.A.
A. Scott Lawing
Affiliation:
Technology Solutions, Freescale Semiconductor Inc., MD: EL722, Tempe, AZ-85284, U.S.A. Rohm and Haas Electronic Materials, 3804 E. Watkins St., Phoenix, AZ-85034, U.S.A.
Suman K. Banerjee
Affiliation:
Technology Solutions, Freescale Semiconductor Inc., MD: EL722, Tempe, AZ-85284, U.S.A.
John N. Zabasajja
Affiliation:
Technology Solutions, Freescale Semiconductor Inc., MD: EL722, Tempe, AZ-85284, U.S.A.
Get access

Abstract

A stress based engineering model has been developed that predicts the removal rate profile across the wafer as a function of the principal and shear stresses on the wafer. The model reproduces the form of the radial variation in polish rate that is seen without back side air for the current set of consumable conditions and the changes in the polish rate profile that occur when back side air pressure is used on an IPEC-472 tool. The model which is GUI based and can be run in the fab, returns the optimum recipe setting to maximize polish rate uniformity based on the current tool performance. Implementing this model in production resulted in a 50% improvement in within wafer uniformity statistics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Troung, P., and Blanchard, L.R., Proc. CMP-MIC, 351-356 (1998).Google Scholar
2. C. El Chemali, Moyne, J., Khan, K., Nadeau, R., Smith, P., Colt, J., and Chapple-Sokol, J., J. Vac. Sci. Technol. A, 18 (4), 12871296 (2000).Google Scholar
3. Wang, D., Lee, J., Holland, K., Bibby, T., Beaudoin, S., and Cale, T., J. Electrochem. Soc., 144 (3), 11211127 (1997).Google Scholar
4. Castillo-Mejia, D., Perlov, A. and Beaudoin, S., J. Electrochem. Soc., 147 (12), 46714675 (2000).Google Scholar
5. Ng, S.H., Yoon, I., Higgs, C.F. III and Danyluk, S., J. Electrochem. Soc., 151 (12), G819–G823 (2004).Google Scholar
6. Fu, G. and Chandra, A., Proc. CMP-MIC, 475478 (2003).Google Scholar
7. Merchant, T.P., Borucki, L., Zabasajja, J., Lawing, A.S., Proc. CMP-MIC, 143150, (2005).Google Scholar
8. Jensen, A., Renteln, P., Farber, J., Raeder, C. and Cheung, P., Proc. CMP-MIC, 251254 (2000).Google Scholar
9. Lawing, A.S., Micro, 20 (1), 3137, (2002).Google Scholar
10. Ng, S.H., “Measurement and Modeling of Fluid Pressures in Chemical Mechanical Polishing,” Ph.D. Dissertation, Georgia Institute of Technology (2005).Google Scholar
11. Zhang, Y., Parikh, P., Stephenson, B., Bonsaver, M., Ling, J., and Li, M., Proc. VMIC, 424426 (1996).Google Scholar
12. Tseng, W., Wang, Y. and Chin, J., J. Electrochem. Soc., 146 (11), 42734280 (1999).Google Scholar
13. Timoshenko, S. and Wionowsky-Krieger, S., Theory of Plates and Shells, Second Edition, McGraw-Hill (1959).Google Scholar
14. Landau, L.D. and Lifschitz, E.M., Theory of Elasticity, Third Edition, Butterworth and Heinemann (1986).Google Scholar
15. ANSYS 5.6, ANSYS, Inc. Southpointe, 275 Technology Drive, Canonsburg, PA 15317.Google Scholar